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Lognormal Distributions for Fish Consumption by the
General U.S. Population

Betsy Ruffle,! David E. Burmaster,’ Paul D. Anderson,* and Henry D. Gordon®

Received June 3, 1993, revised January 3, 1994

The rate of fish consumption is a critical variable in the assessment of human health risk from
water bodies affected by chemical contamination and in the establishment of federal and state
Ambient Water Quality Criteria (AWQC). For 1973 and 1974, the National Marine Fisheries
Service (NMFS) analyzed data on the consumption of salt-water finfish, shellfish, and freshwater
finfish from all sources in 10 regions of the United States for three age groups in the general
population: children (ages 1 through 11 years), teenagers (ages 12 through 18 years), and adults
(ages 19 through 98 years). Even though the NMFS data reported in Ref. 14 are 20 years old, they
remain the most complete data on the overall consumption of all fish by the general U.S. population
and they have been widely used to select point values for consumption. Using three methods, we
fit lognormal distributions to the results of the survey as analyzed and published in Ref. 14. Strong
lognormal fits were obtained for most of the 90 separate data sets. These results cannot necessarily
be used to model the consumption of fish by sport or subsistence anglers from specific sites or

from single water bodies.

KEY WORDS: Fish consumption; lognormal distributions; general U.S. population.

1. INTRODUCTION

Consumption of fish containing environmentally
persistent chemicals represents a potentially important
pathway for human exposure. While this is of particular
concern for individuals who consume large amounts of
fish, it is also useful to know fish consumption rates for
the general U.S. population for use in public health risk
assessments and the development of Ambient Water
Quality Criteria (AWQC) (see Refs. 4 and 21). The U.S.
Environmental Protection Agency (U.S. EPA) and state
agencies commonly rely on point estimates of the
amount of fish consumed daily by various members of
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the U.S. population. For example, in developing fresh-
water Ambient Water Quality Control (AWQC), the U.S.
EPA has historically used a per capita consumption rate
of 6.5 g per day of freshwater and estuarine fish and shell-
fish for the general U.S. fish consumer.®2) Several states,
including New York and Minnesota, use a consumption
rate of 230 g per day everyday when setting AWQC.

Analyses of the distributions of freshwater fish con-
sumption by the general public and sport anglers by An-
derson et al.® and ChemRisk® suggest that many of
these point values overestimate the average consumption
for both groups. To date, no one has presented para-
metric distributions of saltwater fish and shellfish con-
sumption by the general public. Such distributions
would be useful in Monte Carlo simulations to quantify
the variability associated with the risk to public health
from fish consumption.

In 1980, Rupp et al.®* published an analysis of the
U.S. National Marine Fisheries Service’s (NMFS) na-
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Table I. States Comprising the Census Regions of the United States

Region States (postal abbreviation)

NewEng ME, NH, VT, MA, RI, CT

MidAtl NY, NJ, PA

SoAtl DE, MD, DC, VA, WV, NC, SC, GA, FL
ENoCent OH, IN, IL, M], WI

ESoCent KY, TN, AL, MI

WNoCent MN, IA, MO, ND, SD, NE, KS

WSoCent AR, LA, OK, TX

Mtn MT, ID, WY, CO, NM, AZ, UT, NV

Pac WA, OR, CA, AK, HI

tionwide survey designed to provide a representative
sample of fish consumption patterns among the conti-
nental U.S. population. The results of the year-long sur-
vey, originally commissioned by the Tuna Research
Institute (TRI) and conducted by NPD Research, Inc., in
1973 and 1974, were obtained and reanalyzed by the
NMES, with assistance from the U.S. Department of Ag-
riculture (USDA), the U.S. Food and Drug Administra-
tion (FDA), and TRI. One-twelfth of the survey pool
received the survey during each of the 12 months and
were asked to record the number of meals and serving
size for each type of fish eaten. The 12-month duration
of the survey was designed to account for seasonal var-
iation in fish consumption.

For the sample pool of 23,213 participants of
known age, Rupp et al.(*» published selected percentiles
(50th or median, 90th, and 99th), averages, maxima, and
sample sizes for annual fish consumption for three age
groups (children, ages 1 through 11 years; teenagers,
ages 12 through 18 years; adults, ages 19 through 98
years), 10 regions of the country (the 9 census regions
of the U.S. and the entire country as shown in Table I),
and three categories of fish (saltwater finfish, shellfish,
and freshwater finfish). The minimum regional sample
size was 108 (for teenagers from the East South Central
states), and the maximum regional sample size was 3303
(for adults from the Mid-Atlantic states). For each age
group and fish category, Rupp et al. also analyzed the
data from all states as a single group.

We contacted Rupp et al.(% to determine whether
additional percentiles are available. The two of the three
authors who were reached reported that neither the orig-
inal data used to develop the percentiles nor additional
percentiles are now available. While the original NPD
magnetic data tapes are available from the U.S. National
Technical Information Service (NTIS), a review of the
data indicated that reanalyzing the data on the tapes
would be time intensive and redundant of the efforts
already performed by Rupp et al.

Ruffle, Burmaster, Anderson, and Gordon

Table I lists the states in each U.S. Census Region
at the time of the NMFS survey, and Table II tabulates
the 90 data sets for the daily consumption rates (denoted
DCR, in units of g/day every day) as converted from
Rupp et al. For each of the 90 data sets, Table II sum-
marizes the results from the NMFS survey in terms of
the 50th, 90th, and 99th percentiles of consumption
(DCR50, DCR90, and DCR99, respectively), the aver-
age and maximum of consumption (DCR,,, and DCR,,,,
respectively), and the regional sample size (Count). We
do not analyze the data for children eating freshwater
finfish in New England because all the entries for per-
centiles and average are zero.

We worked with the summary statistics presented
by Rupp et al.@® for each of the 8 working data sets.
In each data set, the DCR50 and DCR,,, values supply
good information about the central location of the DCR
distribution, and the DCR90, DCR99, DCR,,,, and
Count values supply good information about the upper
tail of the distribution. The DCR,,, values contain in-
formation on the lower tail of the distribution in the
sense that DCR,,, has contributions from each datum
recorded.

In Table II, each of the DCR values for consump-
tion of saltwater finfish is strictly positive. However,
many of the DCR50 values and some of the DCR90
values for the consumption of shellfish and freshwater
finfish are reported as zero, even though the NMFS sur-
vey included groups with 108 to >3000 people who
were asked to respond for 1 month. The zero values
reported in Table II make the statistical analysis of the
results more difficult as explained below. However, it is
possible that many of the zero values are, in fact, small
nonzero values. The five working data sets with zeros
reported for both the DCRS50 and the DCR90 values
probably reflect too short a period to capture the con-
sumption by those people who eat shellfish or freshwater
finfish infrequently. Specifically, because respondents
reported on fish consumption for 1 month, the survey
had <10% chance of capturing someone who eats only
one fish meal per year. Assuming that the average fish
portion for a single meal is ~200 g, such a person has
a DCR50 of ~0.55 g/day, and not 0 g/day as reported
by Rupp et al.* With a longer measurement period, the
probability of measuring infrequent consumption would
increase, resulting in small, but nonzero values at vari-
ous percentiles.

The NMFS survey has other limitations. The par-
ticipants may not have reported all fish consumed during
the month-long survey, which would result in an under-
estimate of the amount of fish consumed. Participants
also may have overestimated or underestimated portion
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size, the effects of which would tend to balance. The
type of fish consumed may also have been mistaken
(e.g., tuna instead of whitefish). Because this type of
miscategorization is more likely to occur across species
within the main categories of saltwater fish, shellfish,
and freshwater finfish than across categories, this limi-
tation is not expected to affect overall consumption rates
for the three broad categories examined here. Consump-
tion of certain fish types on a long-term basis may also
be underestimated. Someone may eat a certain kind of
fish, such as rainbow trout, only a few times a year, and
not during the month-long survey period. The NMFS
survey did not focus on the consumption patterns of
sport or subsistence anglers who catch and eat fish from
particular water bodies.

Finally, the single greatest limitation of the data is
that overall fish consumption has increased since the sur-
vey was conducted. To address this concern, we re-
viewed several sources to estimate the change in fish
consumption by the general U.S. population, including
two USDA sources®”® and one U.S. Department of
Commerce (USDC) source.” According to the USDA,
in the 10 years from 1977 to 1987, per capita fish con-
sumption increased by ~16%. According to the USDC,
per capita consumption of fish and shellfish increased
~24% between 1975 and 1985 and ~27% between
1975 and 1990. None of these sources distinguish be-
tween the broad categories of fish studied here. (In the
Discussion below, we show how to adjust the results for
the increased consumption.)

Despite these limitations, many of which are com-
mon to nearly all surveys, the NMFS survey included
large regional sample sizes and was conducted over 1
year, so that Rupp et al.® believed that the consumption
patterns were representative of year-round consumption
across the continental United States in the 1970s.

We also note a number of strengths of the NMFS
survey. Given that Rupp et al. ¥ considered 23,213 in-
dividuals in their analyses, their results and our further
analyses have few statistical problems related to small
sample sizes. Because of the relatively large regional
sample sizes and the fact that the original NMFS survey
was designed to capture fish consumers throughout the
continental United States and over 1 entire year, the con-
sumption rates reported by Rupp et al. and the distri-
butions presented here are representative of fish
consumption patterns by the general population. Further,
to the extent that the data include people reporting con-
sumption >150 g/day, they include a subset of the gen-
eral population that eats very large amounts of fish.

Ruffle, Burmaster, Anderson, and Gordon

2. STATISTICAL METHODS AND RESULTS

Using graphical and numerical techniques from ex-
ploratory data analysis,*>!'® we found that the 89 work-
ing data sets in Table II do not come from truncated
normal (or Gaussian) distributions. First, we note that
DCR50 < DCR,,, for each of the 89 working data sets,
implying positively skewed distributions. Second, using
normal probability plotst® written in Mathematica,®® we
fit (truncated) normal distributions to each of the 89
working data sets. We do not report these results because
the fits strongly failed visual and quantitative tests for
goodness of fit. We next investigated whether the 89
working data sets could be well fit by exponential dis-
tributions. We found that the longer-tailed exponential
distributions do give better fits, but the results suggested
that a family of distributions with even longer tails might
fit even better.

We next investigated (two-parameter) lognormal
distributions for two reasons. First, lognormal distribu-
tions are much easier to manipulate and fit to percentile
data than gamma distributions, the next-most reasonable
alternatives also with longer tails. Second, other studies
of other consumption-related exposure variables have
found that lognormal distributions provide good fits to
the data sets.12!» We chose this form of the lognormal
distribution:

InDCR ~ N (4, 0) <==> DCR ~ exp [N (4, 0)]

where In represents the natural logarithm, exp represents
the exponential function, N (u, o) represents a normal
or Gaussian distribution with parameters u for the mean
and o for the standard deviation, and the double-headed
arrow denotes equivalence.

We used three methods to fit lognormal distribu-
tions to the 89 working data sets.

2.1. LogNormal Distributions Fit by a NonLinear
Optimization Method (NLO Method)

If the lognormal model holds exactly for a partic-
ular data set, then these five relationships obtain for ap-
propriate values of u and o:9

DCRS0 = exp (w)

DCR90 = exp [u + 2(0.90) - o]
DCR99 = exp [u + 2(0.99) « o]
DCR,,, = exp [u + 0.5 07
DCR,.,. = exp [u + z(f,..,) * O]
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Here the function z(f) computes the z score for the per-
centile located at fractile f, with 0<f<1.2

For each of the 89 working data sets, we used a
nonlinear optimization (NLO) method to find the opti-
mal values for p and o using an equally weighted least-
squares objective function. We used Mathematica® to
find the values of p and o which minimize the sum of
the squares of the discrepancies:

Select (1, o) to Minimize (AZ,
+ A% + A% + A2, + AZ)

avg

where, for example, Aj;= DCRS0 — exp (n). A zero
minimum value for the objective function shows that the
lognormal model fits a particular data set exactly, while
a small minimum value of the objective function shows
that the lognormal model fits a particular data set rea-
sonably well. This NLO method is a ‘‘full information
method’’ in the sense that it uses all six values reported
by Rupp et al® (DCR50, DCR90, DCR99, DCR,,,,
DCR,,,, and Count in Table II). Table III presents the
optimal values for u and o from this NLO method, along
with the minimum value of the objective function.

2.2, LogNormal Distributions Fit by a First-
Probability Plot Method (PP1 Method)

If the lognormal model holds exactly for a partic-
ular data set, then the data points will plot in a straight
line on a lognormal probability plot with the z values on
the abscissa and the InDCR values on the ordinate.? If
the lognormal model does not hold exactly but does hold
reasonably well for a particular data set, then the data
points will plot in almost a straight line (with small scat-
ter and little curvature) on the axes just described. On
these axes, the linear regression of In DCR as a function
of z has an intercept equal to p and a slope equal to o.
A high adjusted R? value (aR? value) for the linear re-
gression supports the conclusion that a lognormal model
fits the data well.

We used Mathematica to find the intercept and
slope of the linear regression line on the logarithmic
probability plot of InDCR values against z values. Note
that this PP1 method is not a full information method.
Table III presents the optimal values for pu and o from

3 The mathematical function for z(f) is z(f) = sqrt[2] « inverseErf
[2:f—1], where inverseErf denotes the inverse error function.®® By
convention,®#29 2(f__) is computed as z[(Count—0.5)/Count], a value
that changes for each data set analyzed.
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this PP1 method, along with the aR? value from the lin-
ear regression.

2.3. LogNormal Distributions Fit by a Second-
Probability Plot Method (PP2 Method)

To overcome the limitation that many of the data
sets have DCR50 values reported as zeros, we also an-
alyzed the data sets in Table II using a second proba-
bility plot (PP2) method. Again, we used Mathematica
to estimate values of p and o by fitting linear regression
lines to the 84 of the 89 working data sets with values
of DCR90, DCR99, and DCR_,, greater than zero. This
PP2 method simply discards the DCR50 value (whether
zero or positive) and estimates u and o by fitting a
straight line to only three data points on the upper tail
of the distribution. Note that the PP2 method is not a
full information method. Again, a high aR? value sup-
ports the conclusion that a lognormal model fits the up-
per tail of a particular data set well. Table III presents
the optimal values for u and o from this PP2 method,
along with the aR? value from the linear regression.

3. DISCUSSION AND COMPARISON OF THE
RESULTS

3.1. Comparison of the Goodness-of-Fit Measures

Using scatterplots, we found that the goodness-of-
fit measures from the three methods used to test for log-
normality are highly correlated. In other words, low
minimum values of the NLO objective function are
highly correlated with high aR?* values for the linear re-
gressions in the PP1 and PP2 methods.

Figure 1 presents a 3X3 array of graphs which
compare the goodness-of-fit measures of the three meth-
ods for three data sets. In this figure, the graphs down
each column pertain to one statistical method, and the
graphs across each row illustrate the quality of the fit
for one data set. The data set in the top row has excellent
goodness-of-fit measures for all three methods, the data
set in the middle row has acceptable goodness-of-fit
measures for all three methods, and the data set for the
bottom row has poor goodness of fit-measures for all
three methods.
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Fig. 1. Visual comparison of fits for three data sets by the NLO, PP1, and PP2 algorithms.

3.2. Comparison of Best-Fit Parameters

Using scatterplots, we found that the best-fit para-
meters from each method are highly correlated with each
other. For each method alone, and for the three methods
together, a strong and inverse relationship exists between
the optimal value of p and that of o.

3.3. Comparison of Reported and Predicted DCR
Values

Again, we used scatterplots to compare the reported
and predicted DCR values for each of the three methods.
Figure 2 visualizes the absolute and relative ability of
the lognormal distributions fit by the NLO and PP2
methods to reproduce the DCR data reported by Rupp
et al.® In Fig. 2, the plots in the top and bottom rows,
respectively, compare the results from the NLO and the

PP2 methods. In each plot, each point refers to one data
set, the lighter line shows the lowess regression line fit
to the points, and the darker line shows the 45° locus of
perfect prediction. By interactively ‘‘brushing’ data
points on the computer screen in the Systat program,®
we found that most of the more widely scattered points
(relative to the locus of perfect prediction) arise from
data sets with poor goodness-of-fit measures. After re-
stricting the data sets, the four scatterplots in the top row
in Fig. 2 show the points and lowess regression lines for
77 data sets with minSS < 30 as an empirical criterion,
while the corresponding plots in the bottom row show
the scatterplots and lowess regression lines for the 73
data sets with aR?> > 0.90 as an empirical criterion. The
selection criteria reduce the number of data sets by ap-
proximately the same number (NLO, 89 — 12 = 77;
PP2, 84 — 11 = 73). With the restrictions in place, the
NLO method predicts with greater accuracy and less bias
than does the PP2 method for DCRS0, DCR,,,, and
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DCR,,.. When applied to fewer data sets, the PP2
method outperforms the NLO method for predicting
DCR90.

We conclude that the results for 77 data sets fit by
the ‘“full-information’> NLO method with minSS < 30
are well suited for risk assessment (with the adjustment
discussed below) that focuses on the diet of people in
the general population. However, we also conclude that
the results for the remaining 12 data sets fit by the NLO
method may also be appropriate for use when exercised
with due care and with sensitivity analyses.

4. OVERALL DISCUSSION

The lognormal distributions developed here are use-
ful in the discipline of public health risk assessment both
to estimate (i) point values for variables in ‘‘determin-
istic’’ risk assessments and (ii) distributions for *‘prob-
abilistic’” or Monte Carlo risk assessments involving the
consumption of finfish and shellfish. Because they are
more informative and inherently more representative, we
recommend the use of distributions rather than single
point estimates in public health risk assessments. This
type of approach can readily be incorporated into the
development of AWQCs and enables regulators to char-
acterize the distributions of exposures and decide
whether to protect to the 50th, 90th, 95th, or other per-
centile of the population at a particular allowable risk
target. Further, complicated exposure scenarios for com-
binations of regions or combinations of fish categories
can be simulated using several of the distributions in an
appropriate model. Thus, the distributions developed
here represent a toolkit for the analysis of many novel
problems heretofore unaddressable by region, age, or
type of fish.

We recognize limitations in this manuscript that
arise from limitations in the original publication by Rupp
et al.® First, the data from Rupp et al. pertain to the
consumption of fish from all sources (i.e., purchased
from stores or individuals, consumed in restaurants, re-
ceived as gifts, and consumed by sport anglers) by all
people in the general population; they do not apply
(solely) to the consumption of fish caught in a particular
stream, river, or estuary. Hence, they may not be appro-
priate for developing site-specific water quality stan-
dards where fishing patterns differ from those of the
general U.S. population. For site-specific studies where
public health concerns focus on the consumption pat-
terns of sport anglers or ethnic groups with unusual di-
ets, we recommend that the sponsors undertake new,
site-specific surveys which distinguish among pur-
chased, restaurant, gift, and self-caught fish. Second,
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Rupp et al. provide no information on correlations, if
any, among the consumption rates of the three types of
fish. It remains an open question, for example, whether
a person who eats a larger or smaller than average
amount of saltwater finfish eats a larger or smaller than
average amount of freshwater finfish. Third, we draw no
inferences on the uncertainty in the model specification
or in the best-fit parameters. Fourth, fish consumption
has increased since the NMFS survey was conducted in
1973 and 1974 by ~16 to ~27%. An increase in overall
fish consumption >27% seems unlikely given the in-
creasing prices in several desirable species due to de-
clining harvests and continuing fish consumption
advisories. Whether the increase in consumption applies
to all types of fish and from all sources is unknown. To
account for this, the location of the distributions for the
consumption rates can be increased appropriately if the
age of the NMFS survey is a concern to the reader.

Despite the overall increase in fish consumption by
the general U.S. population, it is likely that the distri-
butions are still lognormal in shape and that the tails
(minima and maxima) are essentially the same. Those
people who have always eaten very little fish probably
still eat very little, and those who have always eaten
large quantities probably still eat fish at the same high
rates (as limited by caloric balance). While a small frac-
tion of the U.S. population may consume fish at rates
equal to the combined intake of red meat, poultry, and
fish, there is a limit on the protein intake which will not
have changed in the last 20 years. Therefore, the increase
in overall fish consumption is likely to be reflected in
the body of the distribution, which includes individuals
who eat moderate amounts of fish. For these individuals,
the peaks of the distributions are likely to have shifted
to the right, resulting in medians ~25% higher than in-
dicated by the distributions presented in this paper. The
simple addition of 0.22 = In(1.25) to each of the p val-
ues fit in this paper increases each percentile (and there-
fore each average) of each distribution by 25%, a
conservative adjustment to account for the general in-
crease in fish consumption in the United States since the
time of the survey.

It should be noted that the U.S. EPA’s average fish
consumption rate of 6.5 g/day is consistent with Rupp
et al.’s consumption rates for these types of fish by all
U.S. consumers. The combined DCR,,, of shellfish and
finfish of 5.0 g/day for all adults supports the 6.5 g/day
rate historically used by the U.S. EPA in health risk
assessments and in setting AWQCs, even with the con-
servative 25% adjustment factor.

While we acknowledge certain limitations, while
we agree that site-specific surveys are often useful or
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necessary for estimating recreational or subsistence fish-
ing rates, and while we agree that a new long-term
(>12-month) nationwide survey that disaggregates fish
consumption into categories of fish (i.e., salt vs fresh
water, and finfish vs shellfish) would provide additional
useful information, we believe that the results here are
strong and unique in that no other such national survey
now exists. Consequently, we believe that these re-
sults—with the adjustment just discussed—are useful
now in practical risk assessments and in the setting of
federal and state AWQCs. Until and unless a new and
large national survey that disaggregates saltwater finfish,
shellfish, and freshwater finfish is funded and conducted,
the data of Rupp et al.®¥ provide an excellent basis for
Monte Carlo analyses.
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