Sediment Effects on Macroinvertebrates Implications for the Indian Creek Sediment Target

Lower Boise Watershed Council PREPARED FOR:

Brian Drake and Tom Dupuis PREPARED BY:

June 21, 2011 DATE:

The following table summarizes the literature cited on the Indian Creek Watershed Advisory Group (WAG) website (<u>http://www.deq.idaho.gov/about/regions/indian_creek_wag/index.cfm</u>).

EXHIBIT 1. SEDIMENT EFFECTS SUMMARY

Study	Author(s) and Date	Location	Primary Species, if applicable	Recommended SS Target	Conclusions	Other Notes
Effect of Silt, Water and Periphyton Quality on Survival and Growth of the Mayfly, <i>Heptagenia sulphurea</i>	Peeters et al., 2006	Common Meuse River, Netherlands	Mayfly (Heptagenia sulphurea)	No suggestion	Laboratory experiment found presence of silt layer on periphyton limited mayfly growth, and suspended sediment (SS) in river may need to be reduced to reestablish mayfly populations.	River has an armored gravel bed and velocities up to 4 m/s. SS of 25-30 mg/L in 1990s considered possible impediment to benthic macroinvertebrates (observations by others).
Understanding the Influence of Suspended Solids on Water Quality and Aquatic Biota	Bilotta and Brazier, 2008	 a) New Zealand b) United States c) England d) United States e) United States f) United States g) New Zealand h) Canada i) England 	 a) Invertebrates b) Benthic invertebrates c) Stream invertebrates d) Cladocera e) Chironomids f) Benthic invertebrates g) Mayfly h) Rainbow trout i) Brown trout 	No single suggestion because potential impacts are complex. Current standards range from increases beyond background (Canada), impact on photosynthetic activity (U.S. EPA), absolute values (EU), and regional/environment- specific values (Australia). Recommendations for developing standards include environment- specific considerations, high resolution (frequent) monitoring, SS characterized according to geochemical	 a) 8 – 177 mg/L SS for 1344 hours reduced density by 26% b) 62 mg/L SS for 2400 hours reduced population by 77% c) 130 mg/L SS for 8760 hours reduced species diversity by 40% d) 82 – 392 mg/L SS for 72 hours harmed survival and reproduction e) 300 mg/L SS for 2016 hours reduced population by 90% f) 743 mg/L SS for 2400 hours reduced population by 85% g) 1,000 nephelometric turbidity units (NTU) for 336 hours and 20,000 NTU for 24 hours did not increase mortality h) 47 mg/L SS for 1152 hours caused 100% mortality in incubating eggs i) 5,838 mg/L SS for 8,670 hours reduced population by 85% 	These values were observed by others and reported in Tables 2 and 3 of this study. Factors other than concentration, including duration of exposure, chemical composition, and particle size distribution, also contribute to the effect of SS on aquatic biota. Turbidity should not be used as a sole, direct surrogate for SS because factors other than SS affect turbidity measurements.
				composition and particle size distribution, and concurrent SS and ecological status monitoring.	0070	

EXHIBIT 1. SEDIMENT EFFECTS SUMMARY

Study	Author(s) and Date	Location	Primary Species, if applicable	Recommended SS Target	Conclusions	Other Notes	
Protecting Sediment-Sensitive Aquatic Species in Mountain Streams Through the Application of Biologically Based Streambed Sediment Criteria	Bryce et al., 2010	Western U.S. mountain streams	a) Vertebratesb) Macroinvertebrates	No suggestion	Minimum-effect levels for reach-wide wetted streambed material:	Study focused on bed sediment composition, not SS.	
					a) Fines (<0.06 mm) = 5%, Sand and fines (<2 mm) = 13%		
					b) Fines (<0.06 mm) = 3%, Sand and fines (<2 mm) = 10%		
An Experimental Test of the Effects of Inorganic Sediment Addition on Benthic Macroinvertebrates of a Subtropical Stream	Vasconcelos and Melo, 2008	Forqueta River, Brazil	Ephemeroptera, coleoptera, and trichoptera	No suggestion	Macroinvertebrate abundance and species richness were significantly reduced by sediment addition, and coarse sand had more of an effect than fine sand. Reductions in these parameters was likely due to abrasion.	Experiment featured addition of sediment (fine and coarse sand) to a stream.	
Literature Review: Biotic and Abiotic Factors Affecting the Distribution of Freshwater Macroinvertebrates	Vanessa, 2010	N/A	N/A	No suggestion	Identified biotic (e.g., predation) and abiotic (including suspended sediment) factors affecting macroinvertebrates.	Brief review of other studies.	
Effects of Sedimentation and Turbidity on Lotic Food	Henley et al., 2010	N/A	Varied	No suggestion	Turbidity (NTU) and suspended sediment concentrations cannot always be correlated across different measurement techniques/units and watersheds.	Literature review:	
Managers						- Shifts toward silt-tolerant genera (e.g.,	
					Methods such as riparian buffers may limit introduction of sediment to river systems.	as low as 53 mg/L SS	
						 600 – 750 mg/L SS led to reduced clearance rates and nitrogen excretion for mussels. 	
						- Turbidity of 6 NTU reduced <i>Daphnia</i> <i>pulex</i> feeding efficiency by 25%,60 NTU caused decreased feeding rate in bluegills, and increases of 25 NTU decreased primary production up to 50%.	
The Biological Effects of Suspended and Bedded Sediment (SABS) in Aquatic Systems: A Review	Berry et al., 2003	N/A	Varied	At the time of writing, U.S. SS criteria values ranged from 30 mg/L up to 158 mg/L, depending on stream, substrate, and organisms present.	Elevated levels of SABS have been shown to have wide ranging effects on both pelagic and benthic invertebrates (Cordone and Kelly 1961; Maurer et al., 1986; Peddicord,1980; Waters, 1995; Wilber and Clarke, 2001). Effects can be classified as having a direct impact on the organism due to abrasion, clogging of filtration mechanisms thereby interfering with ingestion and respiration, and in extreme cases smothering and burial resulting in mortality. Indirect effects stem primarily from light attenuation leading to changes in feeding efficiency and behavior (i.e., drift and avoidance) and alteration of habitat stemming from changes in substrate composition, affecting the distribution of infaunal and epibenthic species (Donahue and Irvine, 2003; Waters, 1995; Zweig and Rabeni, 2001).	Increased SS (~120 mg/L) can result in increased drift of benthic invertebrates.	
						Idaho's Guide to Selection of Targets for Use in Idaho TMDLs (Idaho DEQ, 2003) referenced as a good example of a document outlining criteria with explicit biological justification.	
						Copepods displayed reduced feeding at SS concentrations as low as 95 mg/L, while daphnids showed reduced feeding at between 50 and 100 mg/L. Copepod population grow was reduced at SS concentrations exceeding 350 mg/L.	
					Some useful models for the biological effects of SABS exist and others are under development. Generalizations are difficult because biological response to both increased suspended sediment and increased bedded sediment varies with species and sediment characteristics.	SS effects on fish are varied over different studies. For rainbow trout, eggs experienced 100% mortality at as low as 46.6 mg/L SS, juveniles experienced mortality of 0-15% at 90 mg/L SS, and adults showed reduced abundance at 18 mg/L SS in one study buy no mortality at 80,000 mg/L SS in another.	

EXHIBIT 1. SEDIMENT EFFECTS SUMMARY

Study	Author(s) and Date	Location	Primary Species, if applicable	Recommended SS Target	Conclusions
Landscapes and Riverscapes: The Influence of Land Use on Stream Ecosystems	Allan, 2004	N/A	N/A	No suggestion	Sedimentation identified as a factor that influ ecosystems by increasing turbidity, scour, ar impairing substrate suitability for periphyton production, decreasing primary production a in-filling interstitial habitat harming crevice-o invertebrates and gravel-spawning fish, coat respiratory surfaces, and reducing stream de heterogeneity.
Environmental Effects of Sediment on New Zealand Streams: A Review	Ryan, 1991	New Zealand and elsewhere	Varied	At background levels up to10 NTU (10 g/m ³), allow an increase above background of up to 1 NTU (1 g/m ³). At background levels exceeding 10 NTU, allow an increase of up to 10% beyond background.	Noted that suspended sediment loadings on fauna in many ways, and that relatively unim may be more sensitive to anthropogenic incr suspended sediment.
Direct and Indirect Effects of Sediment Pulse Duration on Stream Invertebrate Assemblages and Rainbow Trout (<i>Oncorhynchus mykiss</i>) Growth and Survival	Shaw and Richardson, 2001	Moffat Creek, British Columbia	31 families of invertebrates, with Chironomidae being most abundant, followed by Baetidae and Limnephilidae.	No suggestion	Duration of a sediment pulse, given a consta concentration, had a negative effect on the r abundance of benthic invertebrates and the drifting invertebrates. However, the total abu drifting invertebrates increased over the dura experiment.
Fine-Grained Sediment in River Systems: Environmental Significance and Management Issues	Owens et al, 2005	Case studies in New Zealand, British Columbia, and the U.S.	N/A	No suggestion	Article focused on management of fine-grain river systems. Recommended developed int management strategies to address sedimen quality issues.
Mayflies (Insecta: Ephemeroptera) and the Assessment of Ecological Integrity : a Methodological Approach	Bauernfeind and Moog, 2000	Europe	Mayfly	No suggestion	Mayfly abundance and diversity can be used ecological integrity if a proper monitoring pro implemented.
Stream Insects as Bioindicators of Fine Sediment	Relyea et al., 2000	Idaho, Oregon, Washington, and Wyoming	83 widely-occurring aquatic macroinvertebrates	No suggestion	The fine sediment bioassessment index (FS developed from a large dataset consisting of segments and 661 taxa, which was refined t common taxa. The presence/absence of the macroinvertebrates was compared to percert in each stream's substrate.
Biological Effects of Fine Sediment in the Lotic Environment	Wood and Armitage, 1997	N/A	N/A	No suggestion	Numerous impacts to macroinvertebrates, so filter-feeding, reduced density, reduced abur diversity, increased drift, and change in com were attributed to SS and sedimentation. Sp concentrations resulting in impacts were not
Effects of Sediment Addition on Macrobenthic Invertebrates in a Northern Canadian River	Rosenberg and Wiens, 1978	Harris River, Northwest Territories	Oligochaeta, plecoptera,	No suggestion	Sediment was added to the test channel. Th sediment added was intended to generate 3

	Other Notes					
uences stream and abrasion, and biofilm and food quality, occupying ating gills and lepth	Study reviews and identifies pathways and mechanisms through which land use influences stream conditions.					
n streams affect npacted streams creases of	An increase of 40 g/m ³ SS above background increased drift by 25%, and an increase of 80 g/m ³ SS increased drift by 90%.					
	A 12-17% increase in interstitial fine sediment of a low sediment substrate resulted in a 16-40% decrease in total invertebrate abundance, and a 27-55% decrease in abundance of the ephemeropteran <i>Deleatidium</i> .					
ant richness and richness of undance of ration of the	Mean sediment pulse was 704 mg/L SS.					
ned sediment in tegrated nt quantity and	Not focused on specific dose-effects.					
d to assess ogram is	This article is focused on using mayflies as an indicator of ecological integrity, rather than SS concentrations affecting mayflies.					
SBI) was of 562 stream to the 83 most ese 83 ent fine sediment	Declines in density as a response to increased fine sediment input may be more prominent with Plecoptera (stoneflies) than other orders, and examining density changes of those specific taxa may be more important than total aquatic invertebrate density during development of a biomonitoring index.					
	Study not focused on SS concentrations.					
such as impaired indance, reduced nmunity structure, pecific SS t identified.	Article focused on sediment sources and effects, but did not attempt to identify specific dose-effects.					
he mass of 30 mg/L SS.	Experiment compared invertebrate drift in a control channel and a channel received					

Study	Author(s) and Date	Location	Primary Species, if applicable	Recommended SS Target	Conclusions	Other Notes
			ephemeroptera, simulidae, chironomidae, hydracarina		Actual observed SS concentrations in the control channel ranged from 0.76 to 1.52 mg/L, and SS concentrations in the sediment addition channel ranged from 0.72 to 20.94 mg/L. Mean SS concentration in sediment addition channel during the August experiment was 7.76 mg/L, and mean concentration during the September experiment was 7.42 mg/L. Significantly more macrobentho drift occurred in the sediment addition channel than in the control channel. Settled sediment likely creates most changes to macrobenthic communites in rivers, and isolated measurements of SS concentrations are not directly correlated with the amount of sediment that settles.	sediment input. The channels were side by side and partitioned with plywood.
					From another study (Gammon, 1970), SS addition achieving concentrations approximately two times normal $(15 - 40 \text{ mg/L} \text{ during summer})$ did not allow for easy detection of reduction in standing crops. However, when SS increased to four times normal, standing crop decreases were easily detected.	
Water Quality Criteria for Freshwater Fish, Chapter 1: Finely Divided Solids	Alabaster and Lloyd (editors), 1982	N/A	Varied, mostly fish	*Less than 25 mg/l - no evidence of harmful effects on fisheries *25 – 80 mg/l – it should usually be possible to maintain good or moderate fisheries *80 – 400 mg/l – unlikely to support good freshwater fisheries *Greater than 400 mg/l – only poor fisheries are likely to be found	Note that these EIFAC guidelines were developed in 1964, and no specific duration was identified in the Alabaster and Lloyd chapter. Further clarification regarding duration has since been provided : "The working party of EIFAC (European Inland Fisheries Advisory Committee) investigated the effect of water pollution, including suspended solids, during the development of Water Quality Criteria for European Freshwater Fish. The studies used to determine the criteria have subsequently been summarised by Alabaster and Lloyd (1980) in which a series of tentative annual mean values for chemically inert solids in suspension were given for the maintenance of freshwater fisheries" (emphasis added). From "Review of UKTAG Proposed Standard for Suspended Solids," APEM Scientific Report 410242, August 2007.	The M.P. Vivier personal communication text in this chapter of Alabaster and Lloyd does not support the conclusion that "Populations of Ephemeroptera disappeared when exposed to greater than 29 mg/L of suspended sediment for 30 days" as cited in the pre-draft TMDL. This stream in France was subjected to discharge of 29,900 mg/L of SS in a wastewater, of which 19,750 mg/L was settleable. A variety of fauna existed upstream of the discharge, and had disappeared immediately downstream. At 4 km (2.5 miles) downstream, all fauna except for Ephemeroptera had reappeared. The SS concentration at this downstream location was reported to be 29 mg/L. The author did not attribute the lack of Ephemeroptera to the residual SS. There are a number of possible explanations, including effects of the very high levels of settleable solids in the discharged water. Moreover, the durations associated with the discharge and the downstream 30 mg/L concentration were not indicated in this text, nor were any of the sampling methods.

EXHIBIT 1. SEDIMENT EFFECTS SUMMARY

Note: Several other studies were briefly reviewed but did not include sufficient information regarding specific suspended sediment dose responses to warrant detailed description in this exhibit. Those studies included Effects of Sediment on the Aquatic Environment: Potential NRCS Actions to Improve Aquatic Habitat (Castro and Reckendorf, 1995), Influence of Fine Sediment on Macroinvertebrate Colonization of Surface and Hyporheic Stream Substrates (Richards and Bacon, 1994), The Influences of Inorganic Sediment on the Aquatic Life of Streams (Cordone and Kelley, 1961), and Water Purity Standards for Freshwater Fishes (Ellis, 1944).

Brief Synopsis

The articles posted on the DEQ website represent some of the available literature on sediment effects on aquatic biota. Because DEQ is proposing a suspended sediment concentration target for Indian Creek based in part on potential impacts to macroinvertebrates, the summary presented in Exhibit 1 primarily focuses on macroinvertebrates. This body of literature generally agrees that anthropogenic sediment inputs from agricultural practices, mining, construction, and other sources can result in an increase in suspended solids and sedimentation in rivers and streams, degrading habitat quality. The literature also agrees that excess fine sediment (suspended and in the substrate) can have deleterious effects on macroinvertebrates. However, much of the literature is focused on fines content of sediment at rest within the river channel. There does not seem to be consensus among the articles regarding a suspended sediment concentration that is protective of macroinvertebrates. Following on our initial review of the literature, it does not appear that there is strong scientific basis for a suspended solids/sediments target for Indian Creek based on effects on macroinvertebrates. There does appear to be ample scientific documentation that the duration of exposure to suspended sediment is important for both macroinvertebrates and fish.