2010 Air Quality Monitoring
Data Summary

State of Idaho
Department of Environmental Quality

June 2012
The 2010 Air Quality Monitoring Data Summary is available for viewing or downloading on the DEQ website at

http://www.deq.idaho.gov/air-monitoring-network

Links to additional documents for download are also available at the DEQ website.
Table of Contents

1. Introduction .. 1
2. Air Quality Standards .. 3
3. Monitoring Network .. 5
 3.1 Particulate Monitoring .. 6
4. Monitoring Results .. 10
 4.1 Ozone .. 10
 4.2 Particulate Matter (10 micrometers) .. 22
 4.3 Particulate Matter (2.5 micrometers) ... 25
 4.4 Carbon Monoxide .. 46
 4.5 Sulfur Dioxide .. 48
 4.6 Lead ... 52
 4.7 Nitrogen Dioxide .. 52
5. Air Quality Index ... 55
6. Impaired Air Quality .. 64
 6.1 Winter Burn Bans .. 64
 6.2 Summer Ozone Alerts .. 64
7. Definitions .. 65
8. Pollution Sources ... 66
9. Criteria Air Pollutants .. 67
Appendix A—Air Quality Data Summaries ... 72

List of Tables

Table 1. 2010 air quality standards for criteria pollutants... 4
Table 2. 2010 monitoring network .. 7
Table 3. 2010 monitoring methods used in Idaho ... 8
Table 4. Environmental Protection Agency Air Quality Index breakpoint definitions. 55
Table 5. 2010 Air Quality Index yearly summary. ... 56
Table A-1. Calculation and breakpoint for the Air Quality Index. .. 72
Table A-2. 2010 Air Quality Index summary report ... 73
Table A-3. 2010 monitor values summary for PM_{2.5} .. 74
Table A-4. 2010 monitor values summary for PM₁₀ .. 75
Table A-5. 2010 monitor values for ozone .. 76
Table A-7. 2010 monitor values summary for nitrogen dioxide. .. 77
Table A-8. 2010 monitor values summary for sulfur dioxide. .. 77
List of Figures

Figure 1. 2010 Idaho ambient air monitoring network ...9
Figure 2. 2010 Idaho nonattainment and maintenance areas..12
Figure 3. Boise—Idaho Transportation Department 8-hour ozone daily maximum concentration...13
Figure 4. Boise—Idaho Transportation Department annual four highest 8-hour ozone concentrations and 3-year average of the 4th highest concentration. ..14
Figure 5. Boise—White Pine 8-hour ozone daily maximum concentration15
Figure 6. Boise—White Pine highest 8-hour ozone concentrations and 3-year average of the 4th highest concentration. ..16
Figure 7. Coeur d'Alene—Lancaster Road 8-hour ozone maximum concentration.17
Figure 8. Coeur d'Alene—Lancaster Road highest 8-hour ozone concentrations and 3-year average of the 4th highest concentration. ...18
Figure 9. Meridian—St. Luke's 8-hour ozone daily maximum concentration.19
Figure 10. Meridian—St. Luke's highest 8-hour ozone concentrations and 3-year average of the 4th highest concentration. ...20
Figure 11. Idaho 8-hour ozone concentrations and 3-year average of the 4th highest concentration. ..21
Figure 12. Three-year average of daily maximum PM$_{10}$..23
Figure 13. Three-year average estimated exceedances of the daily PM$_{10}$ standard...............24
Figure 14. Three-year average 98th percentile daily PM$_{2.5}$ concentration (monitors operated in 2010) ..27
Figure 15. PM$_{2.5}$ 3-year average annual mean ..28
Figure 16. Coeur d'Alene—Lancaster Road PM$_{2.5}$ daily averages from continuous analyzer....29
Figure 17. Garden Valley PM$_{2.5}$ daily averages from continuous analyzer.30
Figure 18. Grangeville PM$_{2.5}$ daily averages from continuous analyzer.31
Figure 19. Idaho City PM$_{2.5}$ daily averages from continuous analyzer.32
Figure 20. Idaho Falls PM$_{2.5}$ daily averages from continuous analyzer.33
Figure 21. Ketchum PM$_{2.5}$ daily averages from continuous analyzer.34
Figure 22. Lewiston PM$_{2.5}$ daily averages from continuous analyzer.35
Figure 23. McCall PM$_{2.5}$ daily averages from continuous analyzer.36
Figure 24. Meridian—St. Luke's PM$_{2.5}$ daily averages from continuous analyzer.37
Figure 25. Moscow PM$_{2.5}$ daily averages from continuous analyzer ...38
Figure 26. Nampa—Fire Station PM$_{2.5}$ daily averages from continuous analyzer.39
Figure 27. Pinehurst PM$_{2.5}$ daily averages from continuous analyzer.40
Figure 28. Pocatello—Garrett and Gould PM$_{2.5}$ daily averages from continuous analyzer41
Figure 29. Salmon PM$_{2.5}$ daily averages from continuous analyzer (beta attenuation monitor). 42
Figure 30. Sandpoint PM$_{2.5}$ daily averages from continuous analyzer.43
Figure 31. St. Maries PM$_{2.5}$ daily averages from continuous analyzer.44
Figure 32. Twin Falls PM$_{2.5}$ daily averages from continuous analyzer.45
Figure 33. Carbon monoxide 2nd highest 8-hour concentration. ..47
Figure 34. Sulfur dioxide annual average. ..49
Figure 35. Sulfur dioxide maximum 24-hour average. ..50
Figure 36. Sulfur dioxide maximum 3-hour average. ...51
Figure 37. Nitrogen dioxide annual 1-hour average. ...54
Figure 38. Air quality for Ada County...57
Figure 39. Air quality for Bannock County...57
Figure 40. Air quality for Benewah County...57
Figure 41. Air quality for Blaine County..58
Figure 42. Air quality for Boise County..58
Figure 43. Air quality for Bonner County..58
Figure 44. Air quality for Bonneville County..59
Figure 45. Air quality for Butte County...59
Figure 46. Air quality for Canyon County...59
Figure 47. Air quality for Caribou County...60
Figure 48. Air quality for Cassia County...60
Figure 49. Air quality for Custer County..60
Figure 50. Air quality for Franklin County...61
Figure 51. Air quality for Idaho County...61
Figure 52. Air quality for Kootenai County...61
Figure 53. Air quality for Latah County...62
Figure 54. Air quality for Lemhi County...62
Figure 55. Air quality for Nez Perce County...62
Figure 56. Air quality for Power County..63
Figure 57. Air quality for Shoshone County..63
Figure 58. Air quality for Twin Falls County..63
Figure 59. Air quality for Valley County...64
1. Introduction

This annual report is issued by the Idaho Department of Environmental Quality (DEQ) to inform the public of air quality throughout Idaho. The purpose of this report is to summarize regional ambient air quality while presenting air monitoring results for six criteria air pollutants. The United States Environmental Protection Agency (EPA) sets national ambient air quality standards (NAAQS) for these pollutants. These criteria air pollutants include the following:

- Particulate matter (PM$_{10}$ ≤10 micrometers (µm), PM$_{2.5}$ ≤2.5 µm in diameter)
- Carbon monoxide (CO)
- Sulfur dioxide (SO$_2$)
- Nitrogen dioxide (NO$_2$)
- Ozone (O$_3$)
- Lead (Pb)

In Idaho, criteria pollutant monitoring occurs primarily in areas of high population where the potential for human exposure is greatest. Particulate matter is currently the most common criteria air pollutant of concern in Idaho because particulate sources are widespread throughout the state. Common sources include windblown dust, re-entrained road dust, smoke (residential, agricultural, and forest fires), industrial emissions, and motor vehicle emissions.

The PM$_{10}$ standard has been in effect since 1987 and historically had been the particulate size of concern. However, PM$_{2.5}$, or fine particulate matter, has been monitored in Idaho since 1998 and has become a pollutant of concern. Numerous studies have associated PM$_{2.5}$ with a variety of respiratory and cardiovascular problems, ranging from aggravated asthma to irregular heartbeats, heart attacks, and early death in people with heart or lung disease. The PM$_{2.5}$ and PM$_{10}$ NAAQS were revised by EPA effective December 17, 2006. Due to a lack of evidence linking health problems to long-term exposure to coarse particle pollution, EPA revoked the annual PM$_{10}$ standard of 50 micrograms per cubic meter (µg/m3) while retaining the short-term 24-hour standard of 150 µg/m3. The 24-hour standard for PM$_{2.5}$ was lowered from 65 µg/m3 to 35 µg/m3 to provide increased protection against health effects associated with short-term exposure (including premature mortality and increased hospital admissions and emergency room visits).

Another historical air pollutant of concern in Idaho is carbon monoxide. The primary source of carbon monoxide is incomplete fossil fuel combustion. Carbon monoxide concentrations have the potential to be high in the urbanized areas where automobile traffic is heavy and cars frequently idle at stoplights. The Boise area (northern Ada County) was the only carbon monoxide nonattainment area in the state. When the State Implementation Plan and Maintenance Plan were accepted by EPA on December 27, 2002, it was reclassified as a maintenance area. No violations of the 1-or 8-hour carbon monoxide NAAQS have occurred since 1991.

Sulfur dioxide and nitrogen dioxide sources are few and localized because these air pollutants come primarily from large industrial sources (transportation sources also contribute to nitrogen dioxide). There is little heavy industry in Idaho and elevated sulfur dioxide and nitrogen dioxide concentrations in ambient air are typically not found. However, due to potential concerns of some localized sources, DEQ has monitored for one or both of these pollutants in Boise, Pocatello, Moyie Springs, Mountain Home, Coeur d’Alene, and Soda Springs. In the past
10 years of targeted monitoring, DEQ has not measured significant concentrations of these pollutants at these monitoring sites.

The fifth criteria air pollutant, ozone, has been monitored by DEQ, in the Treasure Valley since 2002 and in Coeur d’Alene since 2005. Ozone is created when combustion by-products (volatile organic compounds [VOCs]) near the ground react with nitrogen oxides and other compounds to create photochemical smog. These reactions are stimulated on days of intense sunlight and warm temperatures. Ozone has become a pollutant of concern since many summertime days are classified as moderate for ozone on the Air Quality Index (AQI). EPA lowered the 8-hour ozone standard on May 27, 2008, from 0.08 parts per million (ppm) to 0.075 ppm. The new standard poses a greater risk of nonattainment for all airsheds but particularly the Treasure Valley airshed. EPA announced it was reconsidering the ozone standard and was expected to release new proposed NAAQS ozone standards in December 2009. In 2011, EPA announced it would postpone any changes to the ozone NAAQS until 2013.

The sixth criteria air pollutant, lead, is not currently being monitored by DEQ. Lead was monitored in the Shoshone County town of Kellogg, near the Bunker Hill superfund site, because lead was a by-product of the smelting process that occurred in the area for decades. Although a significant problem in the 1970s and early 1980s, airborne lead concentrations at this monitoring site were very low through the 1990s. DEQ discontinued monitoring for lead in 2002. EPA reviewed the lead NAAQS and on November 12, 2008, lowered the standard significantly to 0.15 µg/m³. The new standard provided different monitoring requirements based on whether there were sources emitting significant volumes of lead. Source-oriented monitoring is required for states with sources of lead that emit or have the potential to emit more than 0.5 tons per year (tpy). Nonsource-oriented monitoring is required for urban areas with a population greater than 500,000. The nonsource-oriented requirements will be implemented at the NCore multipollutant monitoring station in Meridian. DEQ will initiate PM₁₀ lead monitoring at the NCore site in Meridian by January 1, 2012.

The NCore multipollutant monitoring site in Meridian is part of an EPA network that uses advanced measurement systems to record data for particles, trace gases, and meteorology. These data are not used to assess compliance with the NAAQS. Instead, the NCore data are used to support air quality forecasting, model evaluation, and to develop emissions strategies.

DEQ monitored for certain common urban toxic air pollutants in the Treasure Valley from 2003 to the beginning of 2005 to determine if concentrations were at levels that could have adverse health effects. The Community Scale Air Toxics Monitoring Project also measured toxic air pollutants in 2007. Health effects from toxic air pollutants include, but are not limited to, increased cancer risk and respiratory, cardiovascular, and neurological effects. While DEQ has discontinued air toxics monitoring, the data proved valuable toward reconciling EPA’s National Air Toxics Assessment (NATA) program to verify prediction models. The NATA models predict cancer and noncancer risk values across Idaho’s airsheds using emissions estimates of certain air toxic compounds. The data have also been crucial in developing DEQ’s air toxics models. As resources become available, Idaho may resume air toxic monitoring in the future.

While Idaho generally enjoys good air quality, in many ways our airsheds are faced with new challenges. Some of these challenges are related to long-term economic and population growth, particularly in terms of vehicles on roadways and growth in new construction. Each day, DEQ
measures the concentration of certain air pollutants throughout the state. DEQ may issue local burn restrictions (voluntary and/or mandatory) when concentrations of these air pollutants reach or exceed the health-based standards or limits established by local ordinance, state law, or federal regulation. Concerned citizens may tune in to the news on their local radio or television station to find out if a burn ban has been issued, or access DEQ’s website at http://www.deq.idaho.gov/air-quality.aspx. DEQ issues a news bulletin to local news media, law enforcement, and fire officials each time a burn ban is imposed. Each year there are a number of voluntary and sometimes mandatory bans issued due to deteriorated local air quality conditions.

Real-time air monitoring data are available on DEQ’s website at http://airquality.deq.idaho.gov/. We encourage you to visit our website at http://www.deq.idaho.gov/ to find more extensive air quality data, educational materials, and discussions of current topics.

We are expanding and refining our website to better serve the residents of Idaho. Improvements are expected to provide the public with better access to real-time monitoring, updated publications, and other information regarding air quality. We want your feedback on our air quality data and program. Please submit your comments via e-mail to Bruce Louks, Monitoring, Modeling, and Emissions Inventory Manager, at Bruce.Louks@deq.idaho.gov or call at 208-373-0294.

2. Air Quality Standards

The federal Clean Air Act of 1970 (CAA) requires EPA to set NAAQS for air pollutants considered harmful to public health and the environment. The standards are designed to primarily protect the general public, including sensitive populations such as asthmatics, children, and the elderly. They are also intended to safeguard public welfare by reducing effects such as decreased visibility and damage to animals, crops, vegetation, and buildings. EPA established standards for six criteria air pollutants. Table 1 contains seven air pollutants, which include two size ranges of particulate matter.

The state of Idaho adheres to the NAAQS. For more information, EPA air quality standards and supporting rationale are available at http://epa.gov/air/criteria.html.
Table 1. 2010 air quality standards for criteria pollutants.

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Level</th>
<th>Averaging Time</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ozone (O₃)</td>
<td>0.075 ppm</td>
<td>8-hour</td>
<td>The 3-year average of the 4th highest daily maximum 8-hour average concentration cannot exceed the level measured at each monitor within an area over each year. The standard was lowered May 27, 2008, from 0.08 ppm.</td>
</tr>
<tr>
<td>Particulate matter, 10 µm (PM₁₀)</td>
<td>150 µg/m³</td>
<td>24-hour</td>
<td>The 24-hour average cannot exceed the level more than once per year on average over 3 years.</td>
</tr>
<tr>
<td>Particulate matter, 2.5 µm (PM₂.₅)</td>
<td>15 µg/m³</td>
<td>Annual (arithmetic average)</td>
<td>The 3-year annual average of the weighted annual mean concentrations cannot exceed the level. The standard was lowered December 17, 2006, from 15.4 µg/m³.</td>
</tr>
<tr>
<td></td>
<td>35 µg/m³</td>
<td>24-hour</td>
<td>The 3-year average of the 98th percentile (based on the number of samples taken) of the daily concentrations must not exceed the level. The 24-hour standard was lowered from 65 µg/m³ to 35 µg/m³ on December 17, 2006.</td>
</tr>
<tr>
<td>Carbon monoxide (CO)</td>
<td>35 ppm</td>
<td>1-hour</td>
<td>The 1-hour average cannot exceed the level more than once per year.</td>
</tr>
<tr>
<td></td>
<td>9 ppm</td>
<td>8-hour</td>
<td>The 8-hour average cannot exceed the level more than once per year.</td>
</tr>
<tr>
<td>Sulfur dioxide (SO₂)</td>
<td>75 ppb</td>
<td>1-hour</td>
<td>The 1-hour average cannot exceed the level more than once per year.</td>
</tr>
<tr>
<td></td>
<td>0.5 ppm</td>
<td>3-hour</td>
<td>The 3-hour average cannot exceed the level more than once per year.</td>
</tr>
<tr>
<td>Lead (Pb)</td>
<td>0.15 µg/m³</td>
<td>Rolling 3-month</td>
<td>The rolling 3-month average (12 average periods per year) cannot exceed the level. The standard was lowered October 15, 2008, from 1.5 µg/m³.</td>
</tr>
<tr>
<td>Nitrogen dioxide (NO₂)</td>
<td>0.053 ppm</td>
<td>Annual (arithmetic average)</td>
<td>The annual mean cannot exceed the level.</td>
</tr>
<tr>
<td></td>
<td>100 ppb</td>
<td>1-hour</td>
<td>The 1-hour average cannot exceed the level more than once per year.</td>
</tr>
</tbody>
</table>

Notes: Daily concentration is the 24-hour average, measured from midnight-to-midnight; micrometers (µm); parts per million (ppm); parts per billion (ppb); micrograms per cubic meter (µg/m³).

The NAAQS for each pollutant may have different averaging periods (e.g., hourly and 8-hour averages). These different forms of the standard are created and enforced to address varied health impacts that result from shorter, high-level exposure versus longer, low-level exposure. These differences are addressed pollutant-by-pollutant in the following sections, and additional information is on the EPA website. A distinction exists between exceeding and violating a standard; the two are not equivalent. This distinction results from the nature of the standards. In most instances, it is allowable for an area to exceed the standard a few times to allow for possible unusual meteorological circumstances. For example, a carbon monoxide 8-hour average of
15 ppm clearly exceeds the standard; however, it does not violate the standard if it is the only exceedance that year (the standard allows for one exceedance).

The NAAQS for NO$_2$ and SO$_2$ were revised and finalized during the 2010 sampling season. The 1971 annual and 24-hour SO$_2$ standards were revoked but remain in effect until 1 year after an area is designated under the 2010 standard. A 1-hour SO$_2$ standard of 75 parts per billion (ppb) was added as the primary standard, while the secondary 3-hour standard of 0.5 ppm was not changed. These changes to the SO$_2$ standard were promulgated June 22, 2010. A 1-hour NO$_2$ standard of 100 ppb was added as a primary standard during the 2010 revision of the NO$_2$ NAAQS. The primary and secondary annual NO$_2$ standard of 0.053 ppm was not changed. These revisions to the NO$_2$ standard were promulgated February 9, 2010.

As per the final rules, area designations were made in 2011 for SO$_2$ based on the 2008–2010 monitoring data. The 2008–2010 SO$_2$ design values used for these designations were 60 ppb for Pocatello and 53 ppb for Soda Springs. Both areas were well below the primary standard of 75 ppb. Design values for NO$_2$ were not determined based on a lack of data for the 3-year period. Areas where monitoring does not exist or where not enough data are available to compute a design value will be designated unclassifiable.

The EPA standards typically apply to an area, which may be defined in different ways. Data are presented for individual monitoring stations in the following sections because this provides more insight into regional differences in Idaho’s ambient air quality. The following summaries show how Idaho’s airsheds compared to the standards discussed above for 2010 and in many instances incorporate the AQI and other measures of air quality where appropriate. The AQI color code shading is shown to aid in interpreting air quality but does not imply whether or not standards were met for each air pollutant. An airshed must satisfy the conditions in Table 1 to ensure compliance with the NAAQS.

3. Monitoring Network

The Idaho monitoring network is a composite of meteorological and air pollutant-specific monitoring equipment. DEQ operates most of the monitors while several tribes operate monitors on tribal lands. Data from the network are sent directly to engineers and scientists through a telemetry network.

Table 2 presents a summary of the monitoring stations used and parameters monitored during 2010. Some parameters were monitored for only part of the year.

Figure 1 shows a map of monitoring stations that were active in 2010. Monitoring stations are mainly located in high population areas; however, DEQ does monitor air quality in some rural areas. Some sites are selected to focus on the emissions of a single pollutant or group of sources (e.g., near a high-traffic volume or residential wood burning area). Monitor siting and monitoring objectives are discussed in the pollutant-specific sections of this report.

Criteria pollutants are measured using methods approved by EPA to assess Idaho’s compliance with NAAQS. In addition, some pollutants of interest are measured using more than one method. These additional methods help engineers and scientists to better understand the presence and behavior of these pollutants.
Table 3 lists the methods used for the various pollutants. The tapered element oscillating microbalance (TEOM) method is a continuous monitoring method used for particulate matter. The TEOM method measures mass concentrations at preset time intervals (e.g., hourly). The TEOM method can also be accessed through telemetry for instantaneous particulate matter concentrations. TEOM methods enable real-time data interpretation, which is discussed in Sections 4.2 and 4.3. Additional information on measurement methods is available at EPA’s website: http://www.epa.gov/ttn/amtic/.

In addition to the criteria air pollutants described in this report, urban air toxic compounds were monitored at a Nampa site from 2003 to 2005 and at five other sites in 2007. If resources become available, DEQ may resume air toxics monitoring in the future. For details on air toxics and chemical toxicity, visit the EPA website at www.epa.gov/ttn/ATW/index.html.

3.1 Particulate Monitoring

Coarse particulate (PM$_{10}$) and fine particulate (PM$_{2.5}$) are measured using a variety of methods in Idaho. EPA considers the federal reference method (FRM) or the federal equivalent method (FEM) to be most accurate for determining PM$_{10}$ and PM$_{2.5}$ concentrations. The FRM involves pulling in air (at a given flow rate) and trapping particles of a certain size (PM$_{10}$ or PM$_{2.5}$) on a preweighed filter. The filter is then weighed again, and the resulting mass is divided by volume of air sampled (determined from flow rate and amount of time) to provide concentration. Particles on the filter can be chemically analyzed later for more information about the sources of particulate matter. Unfortunately, the FRM does not provide continuous or timely information. EPA has designated the TEOM continuous method an FEM for PM$_{10}$. DEQ uses a specific variation of the TEOM, TEOM-Filter Dynamics Measurement System, at the Pinehurst monitoring site. This variation is designated an equivalent method for PM$_{2.5}$ but the other TEOMs are not. Data collected by methods not designated FRM or FEM cannot be used to determine compliance to NAAQS. DEQ uses the TEOM continuous method (designated special purpose monitors) to provide more time-resolved data (i.e., hourly averages) and to assess and forecast air quality in real-time or near real-time.
Table 2. 2010 monitoring network.

<table>
<thead>
<tr>
<th>Site</th>
<th>Location</th>
<th>PM\textsubscript{10} FRM</th>
<th>PM\textsubscript{10} TEOM</th>
<th>PM\textsubscript{2.5} FRM</th>
<th>PM\textsubscript{2.5} BAM</th>
<th>PM\textsubscript{2.5} TEOM</th>
<th>O\textsubscript{3}</th>
<th>SO\textsubscript{2}</th>
<th>NO\textsubscript{2}</th>
<th>NO\textsubscript{y}</th>
<th>CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boise</td>
<td>Idaho Transportation Department—3311 W. State Street</td>
<td></td>
</tr>
<tr>
<td>Boise</td>
<td>Fire Station No.5—16th and Front Street</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>●</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boise</td>
<td>Eastman Building—166 N. 9th Street</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>●</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boise</td>
<td>White Pine Elementary—401 E. Linden Street</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>●</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coeur d'Alene</td>
<td>Lancaster Road</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Franklin</td>
<td>East 4800 South</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Garden Valley</td>
<td>946 Banks-Lowman Road</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Grangeville</td>
<td>United States Forest Service compound</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Idaho City</td>
<td>3851 Highway 21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>●</td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Idaho Falls</td>
<td>Hickory and Sycamore</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Ketchum</td>
<td>111 W. 8th Street</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Lewiston</td>
<td>Sunset Park—1200 29th Street</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>McCall</td>
<td>United States Forest Service—500 North Mission Street</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Meridian</td>
<td>St. Luke’s—520 E. Eagle Road</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Moscow</td>
<td>1025 Plant Sciences Road</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Nampa</td>
<td>Fire Station 923 1st Street</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Pinehurst</td>
<td>Pinehurst School—106 Church Street</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Pocatello</td>
<td>Garrett and Gould</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Pocatello</td>
<td>Wastewater Treatment Plant—Batiste and Chubbuck</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Salmon</td>
<td>618 N. Saint Charles Street</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Sandpoint</td>
<td>1601 Ontario</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Soda Springs</td>
<td>P4/Monsanto—5 Mile Road</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>St. Maries</td>
<td>9th and Center</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Twin Falls</td>
<td>1913 Addison Avenue East</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>●</td>
</tr>
</tbody>
</table>

Notes: Particulate matter 10 micrometers, federal reference method (PM\textsubscript{10} FRM); particulate matter 10 micrometers, tapered element oscillating microbalance, continuous federal equivalent method (PM\textsubscript{10} TEOM); particulate matter 2.5 micrometers, federal reference method (PM\textsubscript{2.5} FRM); particulate matter 2.5 micrometers, tapered element oscillating microbalance method (PM\textsubscript{2.5} TEOM); particulate matter 2.5 micrometers, beta attenuation monitor (PM\textsubscript{2.5} BAM); ozone (O\textsubscript{3}), seasonal (May–September); sulfur dioxide (SO\textsubscript{2}); nitrogen dioxide (NO\textsubscript{2}), seasonal (May–September); total reactive nitrogen (NO\textsubscript{y}); carbon monoxide (CO); trace (●)
Table 3. 2010 monitoring methods used in Idaho.

<table>
<thead>
<tr>
<th>Pollutant Code</th>
<th>Measurement</th>
<th>Method</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>Carbon monoxide</td>
<td>Gas nondispersive infrared radiation</td>
<td>Parts per million</td>
</tr>
<tr>
<td>NOx/NOy</td>
<td>Nitrogen oxides (NOx)</td>
<td>Chemiluminescence</td>
<td>Parts per million</td>
</tr>
<tr>
<td>O₃</td>
<td>Ozone</td>
<td>UV absorption</td>
<td>Parts per million</td>
</tr>
<tr>
<td>PM₁₀ FRM</td>
<td>PM₁₀ reference</td>
<td>Reference—Hi Vol Andersen/GMW 1200</td>
<td>Micrograms per cubic meter</td>
</tr>
<tr>
<td>PM₁₀ TEOM FEM</td>
<td>PM₁₀ TEOM</td>
<td>R&P mass transducer</td>
<td>Micrograms per cubic meter</td>
</tr>
<tr>
<td>PM₂·₅ FRM</td>
<td>PM₂·₅ reference</td>
<td>Reference—R&P Partisol 2025</td>
<td>Micrograms per cubic meter</td>
</tr>
<tr>
<td>PM₂·₅ TEOM FEM</td>
<td>PM₂·₅ TEOM</td>
<td>R&P mass transducer</td>
<td>Micrograms per cubic meter</td>
</tr>
<tr>
<td>PM₂·₅ BAM FEM</td>
<td>PM₂·₅ equivalent</td>
<td>Beta attenuation monitor</td>
<td>Micrograms per cubic meter</td>
</tr>
<tr>
<td>SO₂</td>
<td>Sulfur dioxide</td>
<td>UV fluorescence</td>
<td>Parts per million</td>
</tr>
</tbody>
</table>

Notes: Ultraviolet (UV); federal reference method (FRM); federal equivalent method (FEM); tapered element oscillating microbalance (TEOM) method; beta attenuation monitor (BAM)
Figure 1. 2010 Idaho ambient air monitoring network.
4. Monitoring Results

4.1 Ozone

Ozone, a typically a summertime air pollution problem, forms when pollutants from internal combustion engines and industrial sources (e.g., paints, solvents, and gas vapors) react with sunlight. These pollutants are called ozone precursors and include VOCs and nitrogen oxides. Ozone can also be directly emitted by industrial sources. Ozone levels are usually highest in the afternoon because of the intense sunlight, warm temperatures, and the time required for ozone to form. These levels are highly affected by weather. DEQ monitored ozone from May through September 2010, as this is the time period specified by EPA requirements and the most likely time that high ozone levels will be observed.

Ozone is considered beneficial in the upper atmosphere because it helps to protect the earth from the sun’s rays; however, ozone formed at ground level is unhealthy. Elevated concentrations of ground-level ozone can cause reduced lung function and respiratory irritation and can aggravate asthma. Ozone has also been linked to immune system effects (www.epa.gov/ttn/oarpg/naaqsfin/o3health.html). The damage ozone causes to the lungs typically heals within a few days, but repeated or prolonged exposure may cause permanent damage. People with respiratory conditions should limit outdoor exertion if ozone levels are high. Even healthy individuals may experience respiratory symptoms on a high ozone day. Ground-level ozone can also damage agricultural crops and forests, interfering with their ability to photosynthesize and grow.

Precursor chemicals that react with sunlight to produce ozone are generated primarily in large metropolitan areas. Because Idaho summers are normally hot and dry, ozone levels typically begin to rise in the late morning and peak in the late afternoon and early evening. This phenomenon follows closely with the time of day when the sun is the highest in the sky and temperatures are the hottest.

The ozone standard is defined so that the three highest ozone concentrations in any particular year can exceed the level of the standard while the area still maintains an attainment classification. However, if the 3-year averages of the 4th highest concentration exceed the level of the standard, the area is classified as nonattainment (Figure 2). Starting in 2008, the 3-year average (2006–2008) of the 4th highest 8-hour concentration will violate the NAAQS if it exceeds 0.075 ppm (0.076 ppm or higher).

Since 2002 DEQ has monitored ozone in Boise (Idaho Transportation Department, Whitney Elementary, and White Pine Elementary), Coeur d’Alene (Lancaster Road), Mayfield (Tilli Road), Meridian, and Middleton. Graphs presented in Figure 3–Figure 10 show trends in ozone levels at the monitoring stations in operation during 2010. For each station, the first graph presents daily maximum 8-hour average data for May through September. The shading on each graph corresponds to the AQI categories. The AQI categories of orange and above indicate NAAQS excursions. Breaks in the graphs are due to data being discarded as invalid. Data invalidation occurs when an instrument is taken off-line for routine maintenance, or there is a malfunction. Only valid data are shown on the graphs. The second graph presents the four highest concentrations observed during the year. The yellow circle presents the rolling 3-year
average. The 3-year average of the 4th highest concentration is the value used to assess compliance with the NAAQS.

Figure 11 shows a summary of the ozone monitoring data against the previous and new 8-hour federal standard. It shows that the state has remained at or below the previous ozone standard since monitoring began. It also shows that the Treasure Valley is close to violating the new standard. For additional information on ozone, visit www.epa.gov/air/ozonepollution/, and refer to Section 7 “Definitions” and Section 9 “Criteria Air Pollutants.”
Figure 2. 2010 Idaho nonattainment and maintenance areas.
Figure 3. Boise—Idaho Transportation Department 8-hour ozone daily maximum concentration.
Figure 4. Boise—Idaho Transportation Department annual four highest 8-hour ozone concentrations and 3-year average of the 4th highest concentration.
Figure 5. Boise—White Pine 8-hour ozone daily maximum concentration.
Figure 6. Boise—White Pine highest 8-hour ozone concentrations and 3-year average of the 4th highest concentration.
* Gaps in the charted data reflect times when valid data were not collected either from instrument malfunction, quality assurance failure, or equipment maintenance.

Figure 7. Coeur d’Alene—Lancaster Road 8-hour ozone maximum concentration.
Figure 8. Coeur d'Alene—Lancaster Road highest 8-hour ozone concentrations and 3-year average of the 4th highest concentration.
Figures in this section are not available in this format.

Figure 9. Meridian—St. Luke’s 8-hour ozone daily maximum concentration.

* Gaps in the charted data reflect times when valid data were not collected either from instrument malfunction, quality assurance failure, or equipment maintenance.
Figure 10. Meridian—St. Luke’s highest 8-hour ozone concentrations and 3-year average of the 4th highest concentration.
Figure 11. Idaho 8-hour ozone concentrations and 3-year average of the 4th highest concentration.
4.2 Particulate Matter (10 micrometers)

Particulate matter includes solid matter and liquid droplets suspended in the air. Particles smaller than 2.5 µm in diameter are called fine particles, or PM$_{2.5}$. Sources include combustion activities such as wood stove burning, wild fires, and motor vehicles. Particles between 2.5 µm and 10 µm in diameter are called coarse particles. PM$_{10}$ includes fine and coarse particles. Coarse particles typically come from crushing or grinding operations and dust from roads. PM$_{10}$ can aggravate respiratory conditions such as asthma. People with respiratory conditions should avoid outdoor exertion if PM$_{10}$ levels are high.

The federal annual PM$_{10}$ standard was revoked effective December 17, 2006, from a lack of evidence linking health problems to long-term exposure to coarse particle pollution. The 24-hour standard was not changed. EPA may choose to replace the PM$_{10}$ standard in the future with a PM$_{10-2.5}$ (PM$_{coarse}$) standard, ranging from diameters 2.5 µm to 10 µm. Boise, Pocatello, Sandpoint, and Pinehurst have previously violated federal PM$_{10}$ standards (Figure 2). Sandpoint and Pinehurst are currently nonattainment areas for PM$_{10}$. Pocatello and Boise (northern Ada County) were formerly nonattainment areas but are now considered to be maintenance areas for PM$_{10}$.

Idaho monitors PM$_{10}$ using the continuous equivalent method. The PM$_{10}$ TEOM is an FEM. TEOM data are also used to determine compliance to the PM$_{10}$ NAAQS. The TEOM method results are shown in the following figures. TEOM method data are also used to determine the daily AQI and to inform the public of air quality values in near real-time via DEQ’s webpages at http://airquality.deq.idaho.gov/.

Maximum daily values (24-hour average) confirm that Idaho has generally remained level or has shown a decrease since 1999 although the high value for the Pocatello Garrett and Gould site reflects an unusual high wind event that occurred on August 6, 2010 (Figure 12). Statistical summaries of the FRM and TEOM method PM$_{10}$ concentrations are provided in Appendix A. The maximum PM$_{10}$ measured in 2010 at the Sandpoint and Pinehurst monitors exceeded the 24-hour NAAQS standard. However, the 24-hour PM$_{10}$ NAAQS is only considered violated if there are more than three exceedances during the consecutive 3-year period. For example, we could experience two exceedances in year one, none in year two, and one in year three and not violate the NAAQS.

Figure 13 demonstrates that Idaho’s airsheds, where monitoring is occurring, were in compliance for the daily NAAQS for PM$_{10}$ in 2010. The graph shows the 3-year average estimated exceedances of the 24-hour primary standard. It is clear that all concentrations are below the NAAQS in 2010.

For additional information on PM$_{10}$, visit www.epa.gov/oar/particlepollution/, and refer to Section 7 "Definitions."
Figure 12. Three-year average of daily maximum PM$_{10}$.
Figure 13. Three-year average estimated exceedances of the daily PM$_{10}$ standard. *Note:* Boise Fire Station and Sandpoint monitors have 3-year estimated exceedances equal to zero and are not shown on the graph.
4.3 Particulate Matter (2.5 micrometers)

Particles 2.5 µm in diameter or less are called fine particles, or PM\(_{2.5}\). DEQ considers PM\(_{2.5}\) to be one of the major air pollution concerns affecting a number of airsheds in Idaho. PM\(_{2.5}\) generally comes from wood and agricultural burning, and other area sources, as well as industrial boilers, and vehicle exhaust including cars, diesel trucks, and buses. Fine particulate matter can also be formed secondarily in the atmosphere by chemical reactions of pollutant gases.

Exposure to PM\(_{2.5}\) can have serious health effects. Fine particles are closely associated with increased respiratory disease, decreased lung function, and even premature death. Children, older adults, and people with some illnesses are more sensitive and more likely to develop heart or lung problems associated with PM\(_{2.5}\). People with respiratory or heart disease, older adults, and children should avoid outdoor exertion if PM\(_{2.5}\) levels are high. PM\(_{2.5}\) also significantly affects visibility.

PM\(_{2.5}\) is primarily measured by DEQ using two different methods, the FRM and TEOM. The FRM is the method approved by EPA to determine PM\(_{2.5}\) NAAQS compliance. This method involves pulling air through a size-selective inlet and preweighed filter at a given flow rate that traps particles of a certain size (in this case PM\(_{2.5}\)) on the preweighed filter. The filter is weighed again, and the net weight is divided by the volume of sampled air (determined from flow rate and amount of time) to provide the concentration. Unfortunately, the FRM does not provide continuous or timely information. Idaho uses the TEOM method to provide more time-relevant data. The TEOM method uses measurement of mass to determine particulate matter present. A third method of PM\(_{2.5}\) measurement, the Nephelometer, is used during agricultural burning season. These transportable instruments help DEQ estimate PM\(_{2.5}\) concentrations during monitoring activities.

EPA provides FRM and FEM designation to monitoring methods that meet certain requirements. The designation allows the methods to be recognized by EPA as appropriate for NAAQS compliance determinations. The graphs in this section use data collected primarily from FRMs. The continuous data are from TEOM methods, not designated as FRM or FEM but as special purpose monitors. The TEOM continuous methods are compared to the FRM values for a 1-year period, and calculations are made to determine the degree of difference between the two methods. The differences are then applied to the current continuous values in an attempt to make them reference method-like. Data gathered by the TEOM or Nephelometer methods cannot be used for NAAQS compliance determinations because they do not meet EPA equivalency requirements. States can request approval to use non-FRM and non-FEM monitors for NAAQS compliance through the Approved Regional Method process. DEQ has not begun this process.

Figure 14 shows the 2010 3-year average of the 98th percentile 24-hour (daily) averages at Idaho monitoring stations against the federal standard. All of the annual averages for 2001–2010 fell well below the previous standard of 65 µg/m\(^3\). For 2010, the graph shows the 3-year average for Pinehurst at 36 µg/m\(^3\), just above the new NAAQS of 35 µg/m\(^3\). Franklin exceeds the NAAQS by a large margin (46 µg/m\(^3\)) and Salmon equals the standard, which is substantially lower than the previous year. St. Maries, Nampa, and Meridian PM\(_{2.5}\) monitors meet the daily NAAQS using the FRM. All of Idaho was designated attainment/unclassifiable for PM\(_{2.5}\) in 2010 with the exception of Cache Valley (Franklin County). Cache Valley was designated nonattainment along
with Logan, Utah (Cache Valley) because they share the same airshed and Metropolitan Statistical Area. Pinehurst and Salmon remain areas of concern for PM$_{2.5}$.

Figure 15 shows the 3-year average of the annual averages at each monitoring station against the federal standard. The data show that the annual standard of 15 µg/m3 was exceeded at the Franklin monitoring station.

Figure 16–Figure 32 show daily PM$_{2.5}$ concentrations measured at Idaho sites during 2010 using the TEOM continuous analyzers against a backdrop of AQI breakpoints. Four sites show significant spikes in the orange or Unhealthy for Sensitive Groups category: Idaho City, Pinehurst, Salmon, and Twin Falls. The excursions in Idaho City and Twin Falls are likely the result of smoke from forest fires or windblown dust. The orange episodes in Pinehurst and Salmon are more sustained and typically occur during winter stagnation periods when local woodburning stove emissions build up in the small mountain valleys. A few of the graphs show some blank periods with no concentrations. These are times when a TEOM monitor was not functioning due to mechanical malfunctions or maintenance.

For additional information on particulate matter, visit www.epa.gov/oar/particlepollution/, and refer to Section 7 “Definitions” and Section 9 “Criteria Air Pollutants.”
Figure 14. Three-year average 98th percentile daily PM$_{2.5}$ concentration (monitors operated in 2010).
Figure 15. PM$_{2.5}$ 3-year average annual mean.
Figure 16. Coeur d'Alene—Lancaster Road PM$_{2.5}$ daily averages from continuous analyzer.
Figure 17. Garden Valley PM$_{2.5}$ daily averages from continuous analyzer.
Figure 18. Grangeville PM$_{2.5}$ daily averages from continuous analyzer.
Figure 19. Idaho City PM$_{2.5}$ daily averages from continuous analyzer.
Figure 20. Idaho Falls PM$_{2.5}$ daily averages from continuous analyzer.
Ketchum
PM$_{2.5}$ daily averages from continuous analyzers

Figure 21. Ketchum PM$_{2.5}$ daily averages from continuous analyzer.
Figure 22. Lewiston PM$_{2.5}$ daily averages from continuous analyzer.
Figure 23. McCall PM$_{2.5}$ daily averages from continuous analyzer.
Figure 24. Meridian—St. Luke’s PM$_{2.5}$ daily averages from continuous analyzer.
Figure 25. Moscow PM$_{2.5}$ daily averages from continuous analyzer.
Figure 26. Nampa—Fire Station PM$_{2.5}$ daily averages from continuous analyzer.
Figure 27. Pinehurst PM$_{2.5}$ daily averages from continuous analyzer.
Figure 28. Pocatello—Garrett and Gould PM$_{2.5}$ daily averages from continuous analyzer.
Figure 29. Salmon PM$_{2.5}$ daily averages from continuous analyzer (beta attenuation monitor).
Figure 30. Sandpoint PM$_{2.5}$ daily averages from continuous analyzer.
Figure 31. St. Maries PM$_{2.5}$ daily averages from continuous analyzer.
Figure 32. Twin Falls PM$_{2.5}$ daily averages from continuous analyzer.
Carbon monoxide is an odorless, colorless gas that can enter the bloodstream through the lungs and reduce the amount of oxygen that reaches organs and tissues. Carbon monoxide forms when the carbon in fuels do not burn completely. The majority of carbon monoxide comes from vehicle exhaust. In cities, 85%–95% of all carbon monoxide emissions come from motor vehicle exhaust.

Elevated levels of carbon monoxide in the ambient air can occur in urban canyon areas with heavy traffic congestion. The highest levels of carbon monoxide in the outside air typically occur during the colder months of the year when temperature inversions are more frequent. People with cardiovascular disease or respiratory problems might experience chest pain and increased cardiovascular symptoms, particularly while exercising, if carbon monoxide levels are high. High levels of carbon monoxide can affect alertness and vision even in healthy individuals.

Carbon monoxide monitoring stations are generally located in urban canyon areas with heavy traffic congestion. These include central business areas, roadways, and shopping malls. Idaho currently monitors carbon monoxide in Boise as a condition of EPA’s Northern Ada County (Boise), Idaho CO Maintenance Plan. In 2009, trace carbon monoxide monitoring began at the NCore site in Meridian. Trace monitoring provides the ability to determine whether variations in observed concentrations below 1.0 ppm are from actual changes in atmospheric concentration or from poor sensitivity of older instruments at those low levels.

Figure 33 shows the 2nd highest 8-hour concentrations at Idaho’s monitoring sites versus the NAAQS from 2001 through 2010. The 2nd-highest concentration is displayed on these graphs because, under the federal rule, the 8-hour standard cannot be exceeded more than once per year (thus, choosing the 2nd highest). The data in these graphs confirm the general downward trend for ambient carbon monoxide concentrations from the early 2000s to present. There were no 8-hour concentrations measured at any sites that exceeded the NAAQS (9 ppm). The maximum 8-hour concentration for carbon monoxide in 2010 was 5.8 ppm, well below the 8-hour standard. These data are provided in Appendix A.

The NAAQS also includes a 1-hour standard for carbon monoxide of 35 ppm (cannot be exceeded more than once in any year). Measured 1-hour concentrations in Idaho are historically much lower than the 35 ppm standard, and therefore 1-hour carbon monoxide trends are not graphed. The maximum and 2nd-highest measured 1-hour carbon monoxide concentrations in 2010 were 28.1 ppm and 7.5 ppm, respectively. Additional 1-hour average carbon monoxide data are provided in Appendix A.

For additional information on carbon monoxide, visit http://www.epa.gov/airquality/carbonmonoxide/, and refer to Section 7 “Definitions” and Section 9 “Criteria Air Pollutants.”
Figure 33. Carbon monoxide 2nd highest 8-hour concentration.
4.5 Sulfur Dioxide

Sulfur dioxide is a colorless, reactive gas produced by burning fuels containing sulfur, such as coal and oil, and by industrial processes. Historically, the greatest sources of sulfur dioxide were industrial facilities that derived their products from raw materials like metallic ore, coal, and crude oil, or that burned coal or oil to produce process heat (petroleum refineries, cement manufacturing, and metal processing facilities). Currently, on-road vehicles, marine craft, and diesel construction equipment also release significant sulfur dioxide emissions to the air.

People with asthma who are active outdoors may experience bronchoconstriction, where symptoms include wheezing, shortness of breath, and tightening of the chest. People should limit outdoor exertion if sulfur dioxide levels are high.

Figure 34 shows that the maximum measured sulfur dioxide concentrations in 2010 were significantly below the federal standards. Figure 35 and Figure 36 show the maximum 24-hour and 3-hour concentrations, respectively, at Idaho’s monitoring sites. The maximum 24-hour and 3-hour averages were 0.0320 ppm and 0.1230 ppm, respectively. Note that the Soda Springs monitor is at a different location than it was in the 2001–2002 monitoring period. DEQ changed from population exposure monitoring to hotspot monitoring at Soda Springs. Hotspot refers to monitoring that is designed to investigate pollution sources on a local scale. This monitoring assesses impacts from discreet sources to ambient air, rather than emissions being monitored directly from a stack or chimney.

In 2009, DEQ began trace sulfur dioxide monitoring at the NCore site in Meridian. Trace monitoring provides the ability to determine whether variations in observed concentrations below 0.05 ppm are from actual changes in atmospheric concentration or from poor sensitivity of older instruments at those low levels.

Additional sulfur dioxide data are located in Appendix A. For information on sulfur dioxide visit http://www.epa.gov/air/sulfurdioxide/, and refer to Section 7 “Definitions” and Section 9 “Criteria Air Pollutants.”
Figure 34. Sulfur dioxide annual average.
Figure 35. Sulfur dioxide maximum 24-hour average.
Figure 36. Sulfur dioxide maximum 3-hour average.
4.6 Lead

Lead is a highly toxic metal that was used for many years in household products, automobile fuel, and industrial chemicals. Airborne lead was associated primarily with automobile exhaust and lead smelters. The large reductions in lead emissions from motor vehicles have resulted in great reductions of ambient lead levels across the United States. Industrial processes, particularly primary and secondary lead smelters and battery manufacturers, are now responsible for most of the lead emissions.

People, animals, and fish are mainly exposed to lead by breathing and ingesting it in food, water, soil, or dust. Lead accumulates in the blood, bones, muscles, and fat. Infants and young children are especially sensitive to even low levels of lead. Lead can have health effects ranging from behavioral problems and learning disabilities to seizures and death.

According to EPA, the primary sources of lead exposure are lead-based paint, lead-contaminated dust, and lead-contaminated residual soils. Refer to the EPA website, www.epa.gov/ttnatw01/hlthef/lead.html, for ways to limit your exposure to these lead sources.

Lead has not been monitored in Idaho since 2002. With the phase-out of lead in fuel and the closure of the Bunker Hill lead smelter in Kellogg, airborne lead is no longer considered a public health concern in Idaho.

On November 12, 2008, EPA substantially strengthened the NAAQS for lead. EPA revised the level of the primary (health-based) standard from 1.5 µg/m³ to 0.15 µg/m³ and revised the secondary (welfare-based) standard to be identical in all respects to the primary standard. In conjunction with strengthening the lead NAAQS, EPA promulgated new monitoring requirements in 2010. Monitoring is now required near lead sources that may contribute to violations of the lead NAAQS. Source-oriented monitoring is required near any source that emits more than 0.5 tons per year. Idaho does not have any lead sources that trigger source-oriented monitoring. The monitoring regulations also require nonsource-oriented monitoring in metropolitan areas exceeding a 500,000 population. The monitoring will take place at NCore multipollutant monitoring sites, beginning January 2012.

For additional information on lead, visit www.epa.gov/air/lead/, and refer to Section 7 “Definitions” and Section 9 “Criteria Air Pollutants.”

4.7 Nitrogen Dioxide

Nitrogen dioxide is a reddish brown, highly reactive gas that forms from the reaction of nitrogen oxide and oxygen in the atmosphere. The term NOₓ, which is frequently used, refers to both nitrogen oxide and nitrogen dioxide. Nitrogen dioxide will react with VOCs and can result in ozone. On-road vehicles like trucks and automobiles are the major sources of NOₓ in many airsheds. Industrial boilers and processes, home heaters, and gas stoves can also produce NOₓ. Nitrogen dioxide pollution is greatest during the cold weather seasons.

Nitrogen dioxide can cause respiratory symptoms such as coughing, wheezing, and shortness of breath in people with respiratory diseases such as asthma. Long-term exposure can lead to respiratory infections.
Motor vehicle manufacturers have been required to reduce NOX emissions from cars and trucks since the 1970s. NOX is not considered a significant pollution problem in Idaho. In 2010, DEQ operated three nitrogen dioxide monitors, at Boise, Coeur d’Alene, and Meridian. The monitoring objective was to assess ambient NOX concentrations for evaluating ozone formation processes during the ozone season.

The maximum 1-hour average of nitrogen dioxide measured in 2010 was 0.0095 ppm. The averages observed have consistently been well below the annual NAAQS, as shown in Figure 37 and in the data in Appendix A. Until 2009, these averages could not be used to assess NAAQS compliance since the monitors were not operated for the entire year. Beginning in 2009, DEQ began monitoring nitrogen dioxide year-round at the NCore site in Meridian.

For additional information on nitrogen dioxide, visit http://www.epa.gov/air/nitrogenoxides/, and refer to Section 7 “Definitions” and Section 9 “Criteria Air Pollutants.”
Idaho Nitrogen Dioxide (NO₂)
Annual 1-hour average vs. standard

NO₂ monitoring re-initiated in Meridian on January 3, 2009.

Figure 37. Nitrogen dioxide annual 1-hour average.
5. Air Quality Index

The AQI is reported according to a 500-point scale for each of the major criteria air pollutants: ozone, particulate matter (PM$_{10}$ and PM$_{2.5}$), carbon monoxide, nitrogen dioxide, and sulfur dioxide. The worst denominator determines the ranking. For example, if an area has a carbon monoxide value of 132 on a given day and all other pollutants are below 50, the AQI for that day would be 132. The AQI scale breaks down into six categories. Each category has a corresponding color, shown in Table 4. For information on the concentration breakpoints for each pollutant, refer to Table A-1 in Appendix A.

Table 4. Environmental Protection Agency Air Quality Index breakpoint definitions.

<table>
<thead>
<tr>
<th>Levels of Health Concern</th>
<th>Numeric Value</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good</td>
<td>0–50</td>
<td>Air quality is satisfactory, and air pollution poses little or no risk.</td>
</tr>
<tr>
<td>Moderate</td>
<td>51–100</td>
<td>Air quality is acceptable, however, for some pollutants there may be a moderate health concern for a small number of people who are unusually sensitive to air pollution.</td>
</tr>
<tr>
<td>Unhealthy for sensitive groups</td>
<td>101–150</td>
<td>Members of sensitive groups may experience health effects. The general public is not likely to be affected.</td>
</tr>
<tr>
<td>Unhealthy</td>
<td>151–200</td>
<td>Everyone may begin to experience health effects. Members of sensitive groups may experience more serious health effects.</td>
</tr>
<tr>
<td>Very unhealthy</td>
<td>201–300</td>
<td>Health alert: everyone may experience more serious health effects.</td>
</tr>
<tr>
<td>Hazardous</td>
<td>301–500</td>
<td>Health warnings of emergency conditions. The entire population is more likely to be affected.</td>
</tr>
</tbody>
</table>

The AQI is a national index, so the values and colors used to show local air quality and the associated level of health concern will be the same everywhere in the United States. The number of Good air quality days continues to dominate regionally in Idaho. However, there were brief periods when the air quality degraded into Moderate, and Unhealthy for Sensitive Groups. In 2010, there was one day that reached the Unhealthy category. Table 5 shows the number of days in each AQI category in Idaho counties where air quality is monitored. In 2010, the highest AQI value of 154 was recorded in Franklin County for PM$_{2.5}$. This value was in the Unhealthy range.

While it may appear as if there has been an overall decrease in the number of Good days since 2001, the apparent decline is partly from changes that were made in the AQI index itself. In 1999, PM$_{2.5}$ was added to the index, and the Unhealthy category was divided into Unhealthy and Unhealthy for Sensitive Groups. In addition, ozone monitoring, which was added to the AQI calculation in 2002 for the Treasure Valley and in 2005 for Coeur d’Alene, has been a major contributor to the increased number of Moderate days. The AQI graphs that follow (Figure 38-Figure 59) present the distribution of air quality for each individual county. The AQI data summaries for each county, which support the graphs’ data, are located in Table A-2 in Appendix A.
Table 5. 2010 Air Quality Index yearly summary.

<table>
<thead>
<tr>
<th>County</th>
<th>Total number of AQI days</th>
<th>Good</th>
<th>Moderate</th>
<th>Unhealthy for sensitive groups</th>
<th>Unhealthy</th>
<th>Highest AQI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ada</td>
<td>365</td>
<td>282</td>
<td>82</td>
<td>1</td>
<td>—</td>
<td>119</td>
</tr>
<tr>
<td>Bannock</td>
<td>365</td>
<td>323</td>
<td>41</td>
<td>1</td>
<td>—</td>
<td>144</td>
</tr>
<tr>
<td>Benewah</td>
<td>365</td>
<td>308</td>
<td>56</td>
<td>1</td>
<td>—</td>
<td>115</td>
</tr>
<tr>
<td>Blaine</td>
<td>266</td>
<td>266</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>30</td>
</tr>
<tr>
<td>Boise</td>
<td>354</td>
<td>342</td>
<td>10</td>
<td>2</td>
<td>—</td>
<td>135</td>
</tr>
<tr>
<td>Bonner</td>
<td>363</td>
<td>356</td>
<td>6</td>
<td>1</td>
<td>—</td>
<td>106</td>
</tr>
<tr>
<td>Bonneville</td>
<td>361</td>
<td>361</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>46</td>
</tr>
<tr>
<td>Butte</td>
<td>348</td>
<td>337</td>
<td>11</td>
<td>—</td>
<td>—</td>
<td>61</td>
</tr>
<tr>
<td>Canyon</td>
<td>360</td>
<td>330</td>
<td>29</td>
<td>1</td>
<td>—</td>
<td>112</td>
</tr>
<tr>
<td>Caribou</td>
<td>365</td>
<td>354</td>
<td>8</td>
<td>3</td>
<td>—</td>
<td>139</td>
</tr>
<tr>
<td>Cassia</td>
<td>167</td>
<td>160</td>
<td>7</td>
<td>—</td>
<td>—</td>
<td>67</td>
</tr>
<tr>
<td>Custer</td>
<td>109</td>
<td>109</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>27</td>
</tr>
<tr>
<td>Franklin</td>
<td>33</td>
<td>20</td>
<td>10</td>
<td>2</td>
<td>1</td>
<td>154</td>
</tr>
<tr>
<td>Idaho</td>
<td>343</td>
<td>343</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>45</td>
</tr>
<tr>
<td>Kootenai</td>
<td>341</td>
<td>337</td>
<td>4</td>
<td>—</td>
<td>—</td>
<td>70</td>
</tr>
<tr>
<td>Latah</td>
<td>277</td>
<td>275</td>
<td>2</td>
<td>—</td>
<td>—</td>
<td>58</td>
</tr>
<tr>
<td>Lemhi</td>
<td>343</td>
<td>259</td>
<td>78</td>
<td>6</td>
<td>—</td>
<td>140</td>
</tr>
<tr>
<td>Nez Perce</td>
<td>357</td>
<td>349</td>
<td>8</td>
<td>—</td>
<td>—</td>
<td>61</td>
</tr>
<tr>
<td>Power</td>
<td>4</td>
<td>4</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>24</td>
</tr>
<tr>
<td>Shoshone</td>
<td>365</td>
<td>228</td>
<td>127</td>
<td>10</td>
<td>—</td>
<td>145</td>
</tr>
<tr>
<td>Twin Falls</td>
<td>351</td>
<td>348</td>
<td>2</td>
<td>1</td>
<td>—</td>
<td>115</td>
</tr>
<tr>
<td>Valley</td>
<td>336</td>
<td>335</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>53</td>
</tr>
</tbody>
</table>
Figure 38. Air quality for Ada County.

Figure 39. Air quality for Bannock County.

Figure 40. Air quality for Benewah County.
Figure 41. Air quality for Blaine County.

Figure 42. Air quality for Boise County.

Figure 43. Air quality for Bonner County.
Figure 44. Air quality for Bonneville County.

Figure 45. Air quality for Butte County.

Figure 46. Air quality for Canyon County.
Figure 47. Air quality for Caribou County.

Figure 48. Air quality for Cassia County.

Figure 49. Air quality for Custer County.
Figure 50. Air quality for Franklin County.

Figure 51. Air quality for Idaho County.

Figure 52. Air quality for Kootenai County.
Figure 53. Air quality for Latah County.

Figure 54. Air quality for Lemhi County.

Figure 55. Air quality for Nez Perce County.
Figure 56. Air quality for Power County.

Figure 57. Air quality for Shoshone County.

Figure 58. Air quality for Twin Falls County.
6. Impaired Air Quality

6.1 Winter Burn Bans

Idaho has a winter-impaired air quality program primarily targeting sources of particulate matter from open outdoor burning, prescribed fire use, and wood stoves and fireplaces. Idaho’s program is implemented through local ordinances in those areas that have had winter inversion problems. These ordinances specify that public actions such as open burning bans or indoor wood burning bans take place whenever DEQ reports an AQI above a certain value and air stagnation conditions are forecasted to continue for at least 24 hours.

The DEQ on-line daily Air Quality Reports and Forecasts lists the daily air quality in many cities and regions in Idaho. Each report lists the air pollutant being monitored, AQI, and burn restrictions, if any, for the day. Residents interested in air quality information can visit the website to see the forecast for their area.

DEQ issues an air quality advisory for specific locations between 2:00 p.m. and 4:00 p.m. for the next day when air quality is forecast to be poor. The advisories issued are based upon the expected conditions for the next day. Updates are sent out on weekend days at the same times if conditions are expected to be poor. These advisories are provided to local media outlets and to others through e-mail notification lists.

6.2 Summer Ozone Alerts

DEQ forecasts pollution conditions for ozone in the Treasure Valley and Kootenai County using pollutant monitoring data and meteorological information. Because ozone needs heat and sunlight to form, it is considered a summertime problem and is only monitored from May 1 through September 30. Ozone pollution can rise to high levels when the valley experiences hot days with few clouds in the sky. The Treasure Valley and Kootenai County tend to see daily ozone levels that begin to rise in the late morning and peak in the late afternoon and early evening. This phenomenon follows closely with the time of day when the sun is the highest in the sky through the time temperatures are the hottest. Since we have no control over our weather characteristics, we have to focus on controlling what we put into our air. Under yellow or
moderate alerts, the public is requested to change certain behaviors to prevent further
deterioration of air quality. These alerts will be reported to local media outlets and to others
through an e-mail notification list.

7. Definitions

Air Toxics

Air toxics are broadly defined as almost 700 pollutants that DEQ considers to be potentially
harmful to human health and the environment. These pollutants are listed in “Rules for the
Control of Air Pollution in Idaho” (IDAPA 58.01.01.585 and 586)
(http://adm.idaho.gov/adminrules/rules/idapa58/0101.pdf). Hazardous air pollutants (see below)
are included in this list to identify them as a subset of air toxics.

Criteria Air Pollutant

The Clean Air Act of 1970 defined six criteria air pollutants and established ambient
concentrations of each to protect public health. EPA periodically revises the original
concentration limits and methods of measurement, most recently in 2008. Table 1 provides the
pollutant list and allowed ambient concentrations.

Hazardous Air Pollutant

A hazardous air pollutant (HAP) is an air contaminant identified as toxic in the federal Clean Air
Act, Section 112(b). The 188 pollutants considered HAPs are listed at
http://www.epa.gov/ttn/atw/188polls.html.

Temperature Inversions

The earth gains and loses most of its energy at its surface. It is warmed by solar heating during
the day and cooled by radiation emissions at night. During the late morning and afternoon hours,
the air near the surface is warmer than the air aloft and allows for good pollutant dispersion
(vertical mixing may be 1,500 meters or more). At night with clear skies, the surface radiates
heat into outer space, creating cooler air at the surface and warmer air aloft. Warmer air above
cooler air (temperature inversion) is a stable condition and limits the upward movement of
pollution because the warmer air acts as a barrier. With little or no wind, pollutants are trapped
near the surface (vertical mixing may be 200 meters or less) and can reach high levels of
concentration.

Volatile Organic Compound

A volatile organic compound (VOC) is a gas emitted from certain solids and liquids that
participates in atmospheric photochemical reactions. This excludes all compounds determined to
have negligible photochemical reactivity by EPA and listed in 40 CFR 51.100(s) in effect
July 1, 1998.
Visibility and Regional Haze

Visibility is often explained in terms of visual range and light extinction. Visual range is the maximum distance—usually miles or kilometers—that you can see a black object against the horizon. Light extinction is the sum of light scattering and light absorption by fine particles and gases in the atmosphere. The more light extinction, the shorter your visual range will be. Reduced visibility (or visual range) is caused by weather (clouds, fog, and rain) and air pollution (fine particles and gases). The major pollution contributor to reduced visibility is fine particulate matter (PM$_{2.5}$) emissions, which are transported aloft and may remain suspended for a week or longer. Fine particles have a greater impact than coarse particles at locations far from the emitting source because they remain suspended in the atmosphere longer and travel farther. PM$_{2.5}$ also presents some of the most serious health hazards to the public, so you can roughly assume that the worse the visibility, the unhealthier the air is to breathe.

8. Pollution Sources

Area Sources

Area sources are categories of pollution sources, in which each individual industrial source emits pollutants below the thresholds for a point-source facility designation, and includes other categories that are a result of human activities. Area sources are best estimated at a county level in association with population numbers (e.g., natural gas use for home heating, gas stoves, or woodstoves).

Biogenics

Biogenics are natural sources such as trees, plants, grass, crops, and soils. The worldwide emissions rate of these natural hydrocarbons has been estimated to exceed that of nonmethane hydrocarbons originating from human sources. Isoprene, one of the major constituents of biogenic emissions, is very photoreactive and makes biogenic VOCs, a contributor in ozone formation.

Emission Factor

Emission factor is a value derived from source tests, material balance calculations, or engineering comparisons with similar processes. It is used to estimate emissions from process quantities.

Nonroad Mobile Sources

Nonroad mobile sources include farm vehicles, on-site construction/industrial vehicles, logging equipment, small marine craft, aircraft, trains, lawn and garden equipment, and off-road trail machines.

On-road Mobile Sources

On-road mobile sources include cars, trucks, sport utility vehicles, motorcycles, and buses.
Point Sources

For the every third-year statewide emissions inventory, point sources are defined as facilities that have actual annual air pollutant emissions equal to, or exceeding, 1,000 tpy of carbon monoxide; 100 tpy of NOX, PM10, PM2.5, SOx, or VOCs; or 5 tpy of lead.

Registered Facility

The total of all pollutant-emitting activities located on adjacent or contiguous properties owned or operated by one person or a corporate entity. It includes all of the pollutant-emitting buildings, processes, structures, equipment, control apparatuses, and storage areas at a facility.

9. Criteria Air Pollutants

Ozone

- **What is it?**
 Ozone (O₃), a bluish-colored gas molecule with a strong odor, is composed of three atoms of oxygen. In the upper atmosphere, ozone occurs naturally and partially absorbs the sun’s harmful ultraviolet rays. Ozone at ground level is a summertime air pollution problem.

- **How is it caused?**
 Ozone forms when photochemical pollutants from cars, trucks, and industrial sources react with sunlight. Ozone-forming pollutants include NOX and VOCs; even gasoline-powered yard equipment, paints, solvents, and off-road vehicle motors contribute.

- **When does it happen?**
 Ozone pollution is most common in the summer months, when sunlight and stable atmospheric conditions occur. Ozone levels are usually highest in the afternoon, as sunlight photochemically transforms NOX and VOCs into ozone.

- **Who is affected?**
 Adults and children who are active outdoors, people with respiratory disease such as asthma, and people with unusual sensitivity to ozone. During physical activity, ozone penetrates deeper into the lungs and can do more damage.

 Ozone is a reactive gas. For this reason, high ozone concentrations can cause respiratory distress and disease in humans, decreased yields of agricultural crops and forests, and damage to some rubber products, plastics, and paints used outdoors. National crop losses from ozone exposure are estimated at $3 billion to $5 billion annually. Forest losses are harder to estimate.

- **What are the health effects?**
 Ozone can cause coughing and throat irritation, make deep vigorous breathing more difficult, and increase the chance of respiratory infections. It increases sensitivity to allergens and can trigger asthma attacks. The damage it causes to the lungs heals within a few days, but repeated or prolonged exposure may cause permanent damage.
What can I do about it?
If ozone levels are high and you have a respiratory condition or are normally active outdoors, try to limit your outdoor exertion.

In the United States, management of ozone and other photochemical oxidants has been a major goal of federal and state clean air legislation (Clean Air Act of 1970). Although many of the pollution control efforts required by the CAA have been implemented, efforts to decrease ozone pollution have been only partially successful.

Where is it measured?
Unlike other pollutants monitored here in Idaho, ozone is formed when precursor compounds react in the atmosphere. Winds transport ozone and precursor emissions from one area to another. For the Treasure Valley, ozone precursors are emitted into the air in urban areas of the airshed and subsequently travel southeasterly to more rural areas as they react to form ozone. As a result, for the Treasure Valley airshed, DEQ has monitors in various locations. Another ozone monitor has been running in the Coeur d’Alene area since 2005.

Particulate Matter

What is it?
Particulate matter (PM) includes both solid matter and liquid droplets suspended in the air. Particles smaller than 2.5 µm in diameter are called fine particles, or PM$_{2.5}$. Particles between 2.5 µm and 10 µm in diameter are called coarse particles, or PM$_{10}$. PM$_{10}$ includes both fine and coarse particles. DEQ considers PM$_{2.5}$ to be one of the major air pollution concerns affecting our state.

How is it caused?
PM$_{2.5}$ comes from all types of combustion, including cars, diesel trucks, power plants, wood burning, and from some industrial processes. It can also be formed in the atmosphere by chemical reactions of pollutant gases. The coarse particles in PM$_{10}$ typically come from crushing or grinding operations and dust from roads.

When does it happen?
Daily PM$_{2.5}$ trends in urbanized areas suggest that PM$_{2.5}$ levels peak in association with traffic flow and rush hour periods. Periods of stagnate weather patterns, such as when surface inversions typically occur, contribute to elevated PM$_{2.5}$ trends.

Who is affected?
People with asthma and heart or lung disease, the elderly, and children. PM$_{2.5}$ also significantly affects visibility.

What are the health effects?
Fine particulates (PM$_{2.5}$) pose a greater risk to human health than coarse particulates, because they penetrate deeper into the respiratory system. PM$_{2.5}$ exposure can have serious health effects. People with heart or lung diseases are at increased risk of attacks or premature death. Children and the elderly are more likely to develop heart or lung problems. PM$_{10}$ can aggravate respiratory conditions such as asthma.
What can I do about it?
If PM$_{2.5}$ levels are high, people with respiratory or heart disease, the elderly, and children should avoid outdoor exertion. If PM$_{10}$ levels are high, people with respiratory conditions should avoid outdoor exertion.

Where is it measured?
Due to the health risks associated with particulate matter, both PM$_{2.5}$ and PM$_{10}$ are monitored in various population-oriented locations throughout Idaho.

Carbon Monoxide

What is it?
Carbon monoxide (CO) is an odorless, colorless gas that can enter the bloodstream through the lungs and reduce the amount of oxygen that reaches organs and tissues.

How is it caused?
Carbon monoxide forms when the carbon in fuels does not burn completely. Vehicle exhaust contributes 60% of all carbon monoxide. In cities, that contribution can be as high as 95%.

When does it happen?
Carbon monoxide pollution is at its worst in cold weather because fuels burn less efficiently in low temperatures. Carbon monoxide levels usually peak during morning and evening rush hours.

Who is affected?
People with cardiovascular disease, such as angina, or cardiovascular or respiratory problems, also fetuses and young infants.

What are the health effects?
Chest pain and increased cardiovascular symptoms, particularly while exercising. High levels of carbon monoxide can even affect alertness and vision in healthy individuals.

What can I do about it?
If carbon monoxide levels are high, limit exertion and avoid sources of carbon monoxide such as heavy traffic.

Where is it measured?
Carbon monoxide monitoring stations are located in urban canyon areas with heavy traffic congestion. These include central business areas, roadsides, and shopping malls. The Boise carbon monoxide monitor is located in downtown Boise and monitors carbon monoxide as part of an air quality maintenance plan. Beginning in 2009, carbon monoxide is also monitored in Meridian.

Sulfur Dioxide

What is it?
Sulfur dioxide (SO$_2$) is a colorless, reactive gas.

How is it caused?
Sulfur dioxide is produced by burning sulfur-containing fuels such as coal and oil and by some industrial processes.
• **Where does it happen?**
The highest concentrations of sulfur dioxide are usually near large industrial sources.

• **Who is affected?**
People with asthma who are active outdoors.

• **What are the health effects?**
Bronchoconstriction, which can cause wheezing, shortness of breath, and tightening of the chest. When exposure to sulfur dioxide ends, the symptoms should clear up within an hour.

• **What can I do about it?**
If sulfur dioxide levels are high, limit your outdoor exertion.

• **Where is it measured?**
Because the large primary sources of sulfur dioxide in Idaho are industrial, DEQ monitors for sulfur dioxide near large facilities with high sulfur dioxide emissions. The monitors running in 2010 were located in Pocatello, Soda Springs, and Meridian.

Lead

• **What is it?**
Lead (Pb) is a highly toxic metal that was used for many years in household products, automobile fuel, and industrial chemicals.

• **How is it caused?**
Locally, airborne lead is associated primarily with automobile exhaust and lead smelters. Since the phase-out of lead in fuels, cars and trucks are no longer a significant source of lead. Kellogg’s Bunker Hill Mine ceased operations in 1981, which also contributed to lead source reduction.

• **When does it happen?**
Lead concentrations are likely to be highest near sources where current or former lead smelting/processing operations caused particle fallout, especially in nearby soils such as unpaved parking lots.

• **Who is affected?**
Everyone. Children six years and younger are most at risk.

• **What are the health effects?**
Lead can have health effects ranging from behavioral problems and learning disabilities to seizures and death.

• **What can I do about it?**
According to EPA, the primary sources of lead exposure are lead-based paint, lead-contaminated dust, and lead-contaminated residual soils. Refer to EPA’s website at http://www.epa.gov/tnn/atw/hlthef/lead.html for ways to limit your exposure to these lead sources.

• **Where is it measured?**
Due to the phase-out of leaded fuels and the closure of Idaho’s only lead smelter in 1981, DEQ discontinued monitoring for airborne lead. Historical monitoring was continued...
until 2002 but was discontinued due to the low levels being measured. With the lowering of the lead standard, DEQ will resume lead monitoring in 2011 at the NCore site in Meridian.

Nitrogen Dioxide

- **What is it?**
 Nitrogen dioxide (NO₂) is a reddish brown, highly reactive gas that forms from the reaction of nitrogen oxide (NO) and oxygen in the atmosphere. Nitrogen dioxide will react with VOCs and can result in the formation of ozone.

- **How is it caused?**
 High-temperature combustion sources such as power plants and automobiles are major producers of nitrogen oxide. Home heaters and gas stoves can also produce nitrogen oxide.

- **When does it happen?**
 Nitrogen dioxide pollution is greatest in cold weather. It follows a similar trend to carbon monoxide.

- **Who is affected?**
 Children and people with respiratory diseases, such as asthma.

- **What are the health effects?**
 Nitrogen dioxide can cause respiratory symptoms such as coughing, wheezing, and shortness of breath. Long-term exposure can lead to respiratory infections.

- **What can I do about it?**
 Since the 1970s, motor vehicle manufacturers have been required to reduce nitrogen oxide emissions from cars and trucks. It is not a significant pollution problem in Idaho.

- **Where is it measured?**
 Nitrogen dioxide is not a major concern in Idaho. It was measured during 2010 at the Lancaster Road site near Coeur d’Alene, concurrent with the ozone monitoring season. It is monitored year-round at Meridian.
Appendix A—Air Quality Data Summaries

Table A-1. Calculation and breakpoint for the Air Quality Index.

<table>
<thead>
<tr>
<th>0₃ (ppm)</th>
<th>0₃ (ppm)</th>
<th>PM₂.₅ (µg/m³)</th>
<th>PM₁₀ (µg/m³)</th>
<th>CO (ppm)</th>
<th>SO₂ (ppm)</th>
<th>NO₂ (ppm)</th>
<th>AQI value</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-hour</td>
<td>1-hour⁵</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AQI value</td>
<td>Category</td>
</tr>
<tr>
<td>0.000–0.059</td>
<td>—</td>
<td>0.0–15.4</td>
<td>0–54</td>
<td>0.0–4.4</td>
<td>0.000–0.034</td>
<td>b</td>
<td>0–50</td>
<td>Good</td>
</tr>
<tr>
<td>0.060–0.075</td>
<td>—</td>
<td>15.5–35.4</td>
<td>55–154</td>
<td>4.5–9.4</td>
<td>0.035–0.144</td>
<td>b</td>
<td>51–100</td>
<td>Moderate</td>
</tr>
<tr>
<td>0.076–0.095</td>
<td>0.125–0.164</td>
<td>35.5–65.4</td>
<td>155–254</td>
<td>9.5–12.4</td>
<td>0.145–0.224</td>
<td>b</td>
<td>101–150</td>
<td>Unhealthy for sensitive groups</td>
</tr>
<tr>
<td>0.096–0.115</td>
<td>0.165–0.204</td>
<td>65.5–150.4</td>
<td>255–354</td>
<td>12.5–15.4</td>
<td>0.225–0.304</td>
<td>b</td>
<td>151–200</td>
<td>Unhealthy</td>
</tr>
<tr>
<td>0.116–0.374</td>
<td>0.205–0.404</td>
<td>150.5–250.4</td>
<td>355–424</td>
<td>15.5–30.4</td>
<td>0.305–0.604</td>
<td>0.65–1.24</td>
<td>201–300</td>
<td>Very unhealthy</td>
</tr>
<tr>
<td>c</td>
<td>0.405–0.504</td>
<td>250.5–350.4</td>
<td>425–504</td>
<td>30.5–40.4</td>
<td>0.605–0.804</td>
<td>1.25–1.64</td>
<td>301–400</td>
<td>Hazardous</td>
</tr>
<tr>
<td>c</td>
<td>0.505–0.604</td>
<td>350.4–500.4</td>
<td>505–604</td>
<td>40.5–50.4</td>
<td>0.805–1.004</td>
<td>1.65–2.04</td>
<td>401–500</td>
<td>Hazardous</td>
</tr>
</tbody>
</table>

Notes: parts per million (ppm); micrograms per cubic meter (µg/m³)

a. Areas are generally required to report the AQI based on 8-hour ozone values. However, there are a small number of areas where an AQI based on 1-hour ozone values would be safer. In these cases, in addition to calculating the 8-hour ozone value, the 1-hour ozone value may be calculated, and the greater of the two values reported.

b. Nitrogen dioxide has no short-term National Ambient Air Quality Standard (NAAQS) and can generate an AQI only above a value of 200.

c. Eight-hour ozone values do not define higher AQI values (above 300). AQI values above 300 are calculated with 1-hour ozone concentrations.

For more detailed information about the AQI and the pollutants it measures, go to http://www.airnow.gov/.
Table A-2. 2010 Air Quality Index summary report.

<table>
<thead>
<tr>
<th>County</th>
<th>Total Number of AQI Days</th>
<th>Number of Days for AQI Categories</th>
<th>Number of Days for Main AQI Pollutants</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Good</td>
<td>Moderate</td>
</tr>
<tr>
<td>Ada</td>
<td>365</td>
<td>282</td>
<td>82</td>
</tr>
<tr>
<td>Bannock</td>
<td>365</td>
<td>323</td>
<td>41</td>
</tr>
<tr>
<td>Benewah</td>
<td>365</td>
<td>308</td>
<td>56</td>
</tr>
<tr>
<td>Blaine</td>
<td>266</td>
<td>266</td>
<td>—</td>
</tr>
<tr>
<td>Boise</td>
<td>354</td>
<td>342</td>
<td>10</td>
</tr>
<tr>
<td>Bonner</td>
<td>363</td>
<td>356</td>
<td>6</td>
</tr>
<tr>
<td>Bonneville</td>
<td>361</td>
<td>361</td>
<td>—</td>
</tr>
<tr>
<td>Butte</td>
<td>348</td>
<td>337</td>
<td>11</td>
</tr>
<tr>
<td>Canyon</td>
<td>360</td>
<td>330</td>
<td>29</td>
</tr>
<tr>
<td>Caribou</td>
<td>365</td>
<td>354</td>
<td>8</td>
</tr>
<tr>
<td>Cassia</td>
<td>167</td>
<td>160</td>
<td>7</td>
</tr>
<tr>
<td>Custer</td>
<td>109</td>
<td>109</td>
<td>—</td>
</tr>
<tr>
<td>Franklin</td>
<td>33</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>Idaho</td>
<td>343</td>
<td>343</td>
<td>—</td>
</tr>
<tr>
<td>Kootenai</td>
<td>341</td>
<td>337</td>
<td>4</td>
</tr>
<tr>
<td>Latah</td>
<td>277</td>
<td>275</td>
<td>2</td>
</tr>
<tr>
<td>Lemhi</td>
<td>343</td>
<td>259</td>
<td>78</td>
</tr>
<tr>
<td>Nez Perce</td>
<td>357</td>
<td>349</td>
<td>8</td>
</tr>
<tr>
<td>Power</td>
<td>4</td>
<td>4</td>
<td>—</td>
</tr>
<tr>
<td>Shoshone</td>
<td>365</td>
<td>228</td>
<td>127</td>
</tr>
<tr>
<td>Twin Falls</td>
<td>351</td>
<td>348</td>
<td>2</td>
</tr>
<tr>
<td>Valley</td>
<td>336</td>
<td>335</td>
<td>1</td>
</tr>
</tbody>
</table>

Notes: carbon monoxide (CO); nitrogen dioxide (NO₂); ozone (O₃); sulfur dioxide (SO₂); particulate matter 2.5 micrometers (PM₂.⁵); particulate matter 10 micrometers (PM₁₀)
Table A-3. 2010 monitor values summary for PM$_{2.5}$

<table>
<thead>
<tr>
<th>Data Year</th>
<th>County</th>
<th>No. Obs</th>
<th>1st Max</th>
<th>2nd Max</th>
<th>3rd Max</th>
<th>4th Max</th>
<th>98th %</th>
<th>No. Exceedb</th>
<th>Annual Mean</th>
<th>Annual No. Exceed</th>
<th>Monitor No.</th>
<th>Site ID</th>
<th>Site Address</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>Ada</td>
<td>122</td>
<td>25.3</td>
<td>15.9</td>
<td>12.3</td>
<td>12.3</td>
<td>12.3</td>
<td>0</td>
<td>5.02</td>
<td>0</td>
<td>1</td>
<td>160010010</td>
<td>St. Luke's–520 S. Eagle Rd.</td>
<td>Meridian</td>
</tr>
<tr>
<td>2010</td>
<td>Benewah</td>
<td>70</td>
<td>28.7</td>
<td>26.8</td>
<td>22.0</td>
<td>21.3</td>
<td>26.8</td>
<td>0</td>
<td>9.24</td>
<td>0</td>
<td>1</td>
<td>160090010</td>
<td>9th and Center</td>
<td>St. Maries</td>
</tr>
<tr>
<td>2010</td>
<td>Canyon</td>
<td>60</td>
<td>22.7</td>
<td>14.9</td>
<td>13.8</td>
<td>12.9</td>
<td>14.9</td>
<td>0</td>
<td>5.87</td>
<td>0</td>
<td>1</td>
<td>160270002</td>
<td>Nampa Fire Station–923 1st St.</td>
<td>Nampa</td>
</tr>
<tr>
<td>2010</td>
<td>Franklin</td>
<td>33</td>
<td>70.0</td>
<td>46.4</td>
<td>44.9</td>
<td>35.1</td>
<td>70.0</td>
<td>3</td>
<td>16.85</td>
<td>1</td>
<td>1</td>
<td>160410001</td>
<td>Water Treatment Facility–East 4800 South</td>
<td>Franklin</td>
</tr>
<tr>
<td>2010</td>
<td>Lemhi</td>
<td>102</td>
<td>48.0</td>
<td>35.9</td>
<td>34.7</td>
<td>34.4</td>
<td>34.7</td>
<td>2</td>
<td>10.34</td>
<td>0</td>
<td>1</td>
<td>160590004</td>
<td>618 N. St. Charles St.</td>
<td>Salmon</td>
</tr>
<tr>
<td>2010</td>
<td>Shoshone</td>
<td>357</td>
<td>55.1</td>
<td>49.1</td>
<td>44.9</td>
<td>41.5</td>
<td>36.0</td>
<td>9</td>
<td>12.25</td>
<td>0</td>
<td>1</td>
<td>160790017</td>
<td>Pinehurst School–106 Church St.</td>
<td>Pinehurst</td>
</tr>
<tr>
<td>2010</td>
<td>Shoshone</td>
<td>57</td>
<td>37.3</td>
<td>34.2</td>
<td>31.0</td>
<td>28.5</td>
<td>34.2</td>
<td>1</td>
<td>11.46</td>
<td>0</td>
<td>2</td>
<td>160790017</td>
<td>Pinehurst School–106 Church St. (Pinehurst Precision Monitor)</td>
<td>Pinehurst</td>
</tr>
</tbody>
</table>

a Values indicated come from federal reference or federal equivalent method measurements; particulate matter 2.5 micrometers (PM$_{2.5}$).

b No. exceed indicates the number of times measurements exceeded the National Ambient Air Quality Standard (NAAQS) of 35.5 micrograms per cubic meter (µg/m3). Exceedances themselves do not cause an area to be designated nonattainment, but they can cause the 98th percentile value to be higher which, when averaged with the previous 2 years, can cause an area to be designated nonattainment. For example, in 2008, the 98th percentile for Pinehurst was above the standard at 36.2 µg/m3. Since the 3-year average of the 2007–2010 98th percentile is 34.7 µg/m3, which is below the standard, the area is classified as nonattainment.
Table A-4. 2010 monitor values summary for PM$_{10}$

<table>
<thead>
<tr>
<th>Data Year</th>
<th>County</th>
<th>No. Obs.</th>
<th>1st Max</th>
<th>2nd Max</th>
<th>3rd Max</th>
<th>4th Max</th>
<th>No. Exceed Actual</th>
<th>Estimated Exceedances</th>
<th>Annual Mean</th>
<th>Annual No. Exceed</th>
<th>Monitor No.</th>
<th>Site ID</th>
<th>Site Address</th>
<th>Site Address</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>Ada</td>
<td>341</td>
<td>95</td>
<td>55</td>
<td>51</td>
<td>45</td>
<td>0</td>
<td>0</td>
<td>18.1</td>
<td>0</td>
<td>3</td>
<td>160010009</td>
<td>Fire Station No. 5–16th and Front</td>
<td>Boise</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>Bannock</td>
<td>361</td>
<td>67</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>0</td>
<td>0</td>
<td>17.1</td>
<td>0</td>
<td>3</td>
<td>160050015</td>
<td>Garret and Gould Pocatello</td>
<td>Pocatello</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>Bonner</td>
<td>321</td>
<td>165</td>
<td>56</td>
<td>47</td>
<td>43</td>
<td>1</td>
<td>1</td>
<td>12.1</td>
<td>0</td>
<td>3</td>
<td>160170005</td>
<td>1601 Ontario St.</td>
<td>Sandpoint</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>Canyon</td>
<td>355</td>
<td>73</td>
<td>66</td>
<td>60</td>
<td>58</td>
<td>0</td>
<td>0</td>
<td>18.2</td>
<td>0</td>
<td>2</td>
<td>160270002</td>
<td>Nampa Fire Station–923 1st St.</td>
<td>Nampa</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>Shoshone</td>
<td>333</td>
<td>156</td>
<td>106</td>
<td>80</td>
<td>42</td>
<td>1</td>
<td>1.011</td>
<td>15.1</td>
<td>0</td>
<td>3</td>
<td>160790017</td>
<td>Pinehurst School–106 Church St.</td>
<td>Pinehurst</td>
<td></td>
</tr>
</tbody>
</table>

a. Values indicated come from federal reference method or federal equivalent method measurements; particulate matter 10 micrometers (PM$_{10}$).
Table A-5. 2010 monitor values for ozone.

<table>
<thead>
<tr>
<th>Data Year</th>
<th>County</th>
<th>8-hour O₃</th>
<th>1st Max</th>
<th>2nd Max</th>
<th>3rd Max</th>
<th>4th Max</th>
<th>Days > Std</th>
<th>Required Days</th>
<th>No. Days</th>
<th>% Days</th>
<th>Monitor No.</th>
<th>Site ID</th>
<th>Site Address</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010 Ada</td>
<td>0.069</td>
<td>0.068</td>
<td>0.067</td>
<td>0.067</td>
<td>0</td>
<td>153</td>
<td>153</td>
<td>100</td>
<td>1</td>
<td></td>
<td>160010010</td>
<td>St. Luke’s–520 S. Eagle Rd.</td>
<td>Meridian</td>
<td></td>
</tr>
<tr>
<td>2010 Ada</td>
<td>0.073</td>
<td>0.070</td>
<td>0.069</td>
<td>0.069</td>
<td>0</td>
<td>153</td>
<td>149</td>
<td>97</td>
<td>1</td>
<td></td>
<td>160010017</td>
<td>White Pine Elementary–401 E. Linden</td>
<td>Boise</td>
<td></td>
</tr>
<tr>
<td>2010 Ada</td>
<td>0.067</td>
<td>0.067</td>
<td>0.064</td>
<td>0.064</td>
<td>0</td>
<td>153</td>
<td>153</td>
<td>100</td>
<td>1</td>
<td></td>
<td>160010019</td>
<td>Idaho Transportation Dept.–3311 W. State St.</td>
<td>Boise</td>
<td></td>
</tr>
<tr>
<td>2010 Kootenai</td>
<td>0.065</td>
<td>0.058</td>
<td>0.057</td>
<td>0.056</td>
<td>0</td>
<td>153</td>
<td>147</td>
<td>96</td>
<td>1</td>
<td></td>
<td>160550003</td>
<td>Lancaster Rd.</td>
<td>Coeur d’Alene</td>
<td></td>
</tr>
</tbody>
</table>

Table A-6. 2010 monitor values summary for carbon monoxide.

<table>
<thead>
<tr>
<th>Data Year</th>
<th>County</th>
<th>1-hour CO</th>
<th>8-hour CO</th>
<th>Monitor No.</th>
<th>Site ID</th>
<th>Site Address</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010 Ada</td>
<td>8,687</td>
<td>1.3</td>
<td>1.2</td>
<td>0</td>
<td>0.8</td>
<td>0.8</td>
<td>160010010</td>
</tr>
<tr>
<td>2010 Ada</td>
<td>6,142</td>
<td>28.1</td>
<td>7.5</td>
<td>0</td>
<td>5.8</td>
<td>2.3</td>
<td>160010014</td>
</tr>
</tbody>
</table>
Table A-7. 2010 monitor values summary for nitrogen dioxide.

<table>
<thead>
<tr>
<th>Data Year</th>
<th>County</th>
<th>No. Obs</th>
<th>1st Max</th>
<th>2nd Max</th>
<th>Mean</th>
<th>No. Exceed</th>
<th>Monitor No.</th>
<th>Site ID</th>
<th>Site Address</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>Ada</td>
<td>8,572</td>
<td>0.055</td>
<td>0.052</td>
<td>0.0095</td>
<td>0</td>
<td>1</td>
<td>160010010</td>
<td>St. Luke’s–520 S. Eagle Rd.</td>
<td>Meridian</td>
</tr>
<tr>
<td>2010</td>
<td>Ada</td>
<td>3,336</td>
<td>0.046</td>
<td>0.039</td>
<td>0.0065</td>
<td>0</td>
<td>1</td>
<td>160010019</td>
<td>ITD–3311 W. State St.</td>
<td>Boise</td>
</tr>
<tr>
<td>2010</td>
<td>Kootenai</td>
<td>3,160</td>
<td>0.017</td>
<td>0.016</td>
<td>0.0020</td>
<td>0</td>
<td>1</td>
<td>160550003</td>
<td>Lancaster Rd.</td>
<td>Coeur d’Alene</td>
</tr>
</tbody>
</table>

Note: Idaho Transportation Department (ITD)

Table A-8. 2010 monitor values summary for sulfur dioxide.

<table>
<thead>
<tr>
<th>Data Year</th>
<th>County</th>
<th>No. Obs</th>
<th>1st Max</th>
<th>2nd Max</th>
<th>1st Max</th>
<th>2nd Max</th>
<th>Mean</th>
<th>No. Exceed</th>
<th>Site ID</th>
<th>Site Address</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>Ada</td>
<td>7708</td>
<td>0.0075</td>
<td>0.0031</td>
<td>0.0027</td>
<td>0.0023</td>
<td>0.0011</td>
<td>0.0011</td>
<td>160010010</td>
<td>St. Luke’s–520 S. Eagle Rd.</td>
<td>Meridian</td>
</tr>
<tr>
<td>2010</td>
<td>Bannock</td>
<td>7782</td>
<td>0.172</td>
<td>0.075</td>
<td>0.082</td>
<td>0.080</td>
<td>0.019</td>
<td>0.018</td>
<td>160050004</td>
<td>Sewage Treatment Plant–Batiste and Chubbuck</td>
<td>Pocatello</td>
</tr>
<tr>
<td>2010</td>
<td>Caribou</td>
<td>8713</td>
<td>0.162</td>
<td>0.140</td>
<td>0.123</td>
<td>0.118</td>
<td>0.032</td>
<td>0.024</td>
<td>160290031</td>
<td>P4/Monsanto–Five Mile Rd.</td>
<td>Soda Springs</td>
</tr>
</tbody>
</table>