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Abstract 7 

Design and construction related factors that affect leakage through geomembranes used either 8 

alone or in a composite liners are examined. The number of holes that can develop during 9 

construction and operation of a facility are discussed. The relationship between leakage through 10 

holes in a geomembrane and the hydraulic conductivity of the material above and below the liner 11 

is examined with particular emphasis on tailings above a single geomembrane on a relatively 12 

permeable subgrade and the unstressed zone beneath a wrinkle in a composite liner. It is shown 13 

that the leakage observed in the primary liners of 180 landfill cells can be explained by holed-14 

wrinkles with a length consistent with those observed in the field and an appropriate choice of 15 

hydraulic conductivity of the clay liner below a holed-wrinkle(s). Leakage through GCL overlaps 16 

traversed by wrinkles is examined. The latest research into physical and chemical aging HDPE 17 

geomembranes liners is discussed in the context of the compatibility of the antioxidant package  18 

and resin with the solution to be retained, liner temperature, the nature of exposure, sustained 19 

tensile strains, and welds. The estimation of the service-life of a geomembrane based on immersion 20 

tests and simulated field conditions is examined in terms of antioxidant depletion, stress cracking, 21 

and the maximum allowable strain in a geomembrane. It is concluded that the service-life of a 22 

geomembrane may range from just a few years to many centuries. 23 
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which cannot be readily repaired or replaced, available evidence suggest a maximum allowable 1138 

strain (from all sources) of 4%. 1139 

Seams/welds in a geomembrane were discussed as critical locations with respect to 1140 

geomembrane service-life due to the substantial (up to 4-fold) magnification of the average tensile 1141 

strain (higher demand) and faster degradation of the geomembrane (less resistance) compared to 1142 

material away from the weld. More research is needed to better understand the aging of welds, but 1143 

the discussion on the paper suggests that the potential for weld failure can be minimized by proper 1144 

design and construction to minimize tensile strains in the geomembrane. The impact of failure 1145 

adjacent to welds on leakage minimized by both minimizing wrinkles and using a composite liner 1146 

with GCL. 1147 

Based on the discussion of longevity, it is  concluded that the service-life of a geomembrane 1148 

may range from just a few years to many centuries depending on the factors outlined above.  1149 
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Notation 
a Area of a hole in GMB (m2 or mm2) 
b Half-width of a wrinkle (under operational conditions) (m) 
CB Coefficient related to the shape of the edges of the hole in GMB (-) 
Cqo A contact quality factor established semi-empirically by Giroud et al. (1989b). 

Cqo= 0.21 for good and 1.15 for poor contact between the GMB and CL. 
CL Clay liner (either CCL or GCL) 
CCL Compacted clay liner 
CQA Construction quality assurance 
Dx D is the effective diameter of the soil particles and subscript x (10 and 60) denote 

the percent which is smaller. 
ELLS Electrical leak location survey 
GCL Geosynthetic clay liner 
GLLS Geosynthetic liner longevity simulator 
GMB Geomembrane 
GTX Geotextile 
g Acceleration due to gravity (9.8 m/s2) 
HAZ Heat affected zone (adjacent to a weld) 
ha Hydraulic head at the bottom of the liner (often zero) 



hd Head loss across the liner; hd = hw + HL – ha  (m) 
HL Thickness of clay liner (m) 
hw Leachate head on liner (m) 
HDPE High density polyethylene 
HP-OIT High pressure oxidative induction time (ASTM D5885) 
k Hydraulic conductivity/permeability (m/s) 
kL Hydraulic conductivity of clay liner (m/s) 
kLa Hydraulic conductivity of clay liner away from a wrinkle where there is direct 

contact and significant applied stress between the GMB and CL(m/s) 
kLb Hydraulic conductivity of clay liner below a wrinkle where there is no stress 

between the GMB and CL(m/s) 
L Length of longest connected wrinkle (m) 
Lj Length of jth connected wrinkle (m) 
Lw Length of wrinkle over and parallel to a GCL overlap(m) 
lphd Litres per hectare per day 
LLDPE Linear low density polyethylene 
MSW Municipal solid waste 
n Number of holes or holed-wrinkles per hectare in a GMB or porosity depending 

on context (-) 
OIT Oxidative induction time (see Std-OIT and HP-OIT) 
PE Polyethylene 
PI Plasticity index (-) 
PL Plastic limit (-) 
Q Leakage (m3/s or lphd) 
QB Leakage (m3/s or lphd) calculated using Bernoulli’s equation [Eq. 1] 
Qdc Leakage (m3/s or lphd) calculated assuming direct contact using the Giroud (1997) 

equation [Eq. 2] 
QDL Leakage (m3/s/ha or lphd) calculated from Darcy’s law [Eq. 4b] assuming no GMB  
Qw Leakage (m3/s or lphd) calculated assuming a holed-wrinkle (i.e., a wrinkle with a 

hole) using the Rowe (1998) equation [Eq. 3] 
Ra Depletion adjustment factor [Ra = ratio of the depletion rate for a geomembrane 

immersed in leachate to that in the composite liner at a given temperature] (-) 
ro Radius of a hole in a GMB (m) 
SCR Stress crack resistance typically obtained from the single point notched constant 

tensile load (SP-NCTL) test (ASTM D5397, Appendix) 
SCRm tress crack resistance after physical aginf to a morphologically stable and 

representative value for the geomembrane 
SCRo Initial stress crack resistance shortly after manufacture 
Std-OIT Standard oxidative induction time (ASTM D3895) 
T Liner temperature (oC) 
ti Time to OIT depletion [length of Stage I] (months or years) 
tNF Time to nominal failure(months or years) 
tSL Service-life of the geomembrane (months or years) 
USA United States of America 
wopt Standard Proctor optimum water content 
λ Lw/Lj = proportion of a wrinkle over and parallel to GCL panel overlap (-) 



Λ  (flow for a given overlap configuration) / (flow with a single GCL panel below 
the wrinkle) 9-). 

θ GMB/CL interface transmissivity (m2/s) 
η Number of GCL panel overlaps crossed by a connected wrinkle 
ρd dry density of soil (kg/m3) 
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Table 1  Grain size of underliner (UL), number short-term punctures (a ~2 mm2) and leakage if a 0.3m 
head could be maintained for 1.5 mm HDPE except * (based on data from research reported by 
Rowe et al. 2013 but with additional interpretation) 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

UL D20 
(mm) 

D40  
(mm) 

D60 
(mm) 

D80 
(mm) 

D100 
(mm) 

# holes 
(ha-1) 

Leakage^ 
(lphd) 

Max tensile 
strain+ 

% 
S1 7 10.1 19 20.1 38 300,000 9.9x107 40 S 
S2 0.11 3.7 10.7 30 80 170,000 5.5x107 38 S 
S2* 0.11 3.7 10.7 30 80 100,000 3.3x107 31 S 
S3 0.11 0.5 2.1 10.0 80 0 - 13-14 S; 9 C 
S4 0.09 0.23 1 3.05 10 0 - 11 C 
S5 0.075 0.1 0.18 0.3 2 0 - 15-18 C 
S6   <0.075 0.22 0.9 0 - 13 C 

GCL/S5 GCL wc = 86     64%  0 - 14-21C 
GCL/S5 GCL wc =   7     55%  0 - 12-18 C 
CCL (wopt) CCL wc = 12.2  10.7%  0 - 18-25 C 
CCL (wopt + 4%) CCL wc = 16.1  12.4%  0 - 33-36 C 
CCL (wopt + 4%) One 35 mm gravel in CCL  0 - 18 S$ 

* LLDPE; Columns 2 gives the particle size for which 20% of the dry mass of soil was smaller 
(similar definitions for D40 etc.) ^ Short-term leakage calculated from Bernoulli’s equation 
assuming a sustained head of 0.3 m on the geomembrane.  + Maximum tensile strain due to an 
indentation: S indicates the strain was from gravel in the subgrade; C indicates the strain was 
from gravel in the cover soil. $ Brachman and Sabir (2010) 

 

Table 2.  Overliner Grain Size  and maximum tensile strain from overliner for a range of stresses 
(Underliner: S5 from Table 1). 

Overliner D10 
(mm) 

D30 
(mm) 

D60 
(mm) 

D85 
(mm) 

Cu 
(-) 

Cc 
(-) 

Applied stress (kPa) 
500 1000 2000 3000 

Max tensile strain+  % 
OL1 2 8.8 18 30 9.0 2.2 6 8 18 27 
OL2 0.18 1.9 8 17 44 2.5   12 15 
OL3 0.05 0.23 2 10.1 40 0.5   9 12 
Sand/OL1 2 8.8 18 30 9.0 2.2    < 2 

 

  



 

Table 3. Calculated leakage through five 10 mm-diameter holes in a geomembrane underlain by 
a material with hydraulic conductivity, ks, and overlain by a material with hydraulic conductivity, 
kc for a 5m head above the geomembrane (Figure 6a, b and c). Rounded to 2 significant digits. 

(1) (2) (3) (4) (5) 
kC 

(m/s) 
kS 

(m/s) 
Q 

(lphd) 
Q 

(mm/d) 
Figure 

∞ ∞ 200,000 20 6a 
∞ 1x10-4 200,000 20 6b 
∞ 1x10-6 80,000 8 6b 
∞ 1x10-8 810 0.08 6b 

1x10-5 1x10-6 70,000 7 6c 
1x10-5 1x10-8 800 0.08 6c 
1x10-6 1x10-8 790 0.08 6c 

 

Table 4. Experimentally observed leakage, Q, through hole (ro= 5 mm unless otherwise noted) 
hole in 1 mm-thick LLDPE geomembrane with tailing having hydraulic conductivity, kT, above 
the geomembrane and subgrade with hydraulic conductivity, kS, below the geomembrane subject 
to head, h, and effective stress at bottom of tailings of σv'.  Table compiled from data published 
by Rowe et al. (2017). Leakage rounded to 2 significant figures 

(1) (2) (3) (4) (5) (6) 
kT 

(m/s) 
kS 

(m/s) 
σv' 

(kPa) 
h 

(m) 
Q1

^ 
(lpd) 

Q+ 
(lphd) 

5.4x10-7 7x10-6 (est) 50 20 1.2 6.0 
4.2x10-7 3.8x10-6 500 50 2.7 14 
1.1x10-7 6.9x10-7 1500 150 4.5* 23 

 

1.6x10-6 6.9x10-7 1500 150 7 35 
1.1x10-7 6.9x10-7 1500 150 4.5* 23 
2.9x10-8 6.9x10-7 1500 150 0.5 2.5 

      

1.1x10-7 1x10-2 (est) 1500 150 > 2000# > 10000 
1.1x10-7 1.2x10-5 1500 150 4 20 
1.1x10-7 6.9x10-7 1500 150 4.5* 23 
1.1x10-7 1.1x10-7 1500 150 3 15 

Results below are for ro= 0.75 mm 
1.1x10-7 1x10-2 (est) 1500 150 0.08 0.40 
1.1x10-7 6.9x10-7 1500 150 0.005 0.025 

* Average of results from four test with leakages of 2.4, 4.5, 5 and 6 lpd 
^ Measured leakage for a single hole under conditions indicated 
+ inferred for results, Q1, for a single hole assuming 5 holes/ha 
# Exceeded 2000 lpd and associate with piping of tailings through hole 
  



 

Table 5. Probability of exceeding a given leakage through primary liner based on field data for 

NY double lined landfills (based on data published by Beck 2015)  

 
 

(1) (2) (3) 
Leakage  Probability leakage ≥ leakage indicated 
(lphd) no ELLS with ELLS 

10 90% 82% 
20 83% 72% 
40 65% 58% 
60 52% 47% 
80 45% 33% 
100 38% 25% 
150 30% 5% 
190 19% 3% 
300 8%  
500 5%  
800 <2%  

 
 
 

  



 

Table 6. Calculated leakage through five 10 mm-diameter holes in a geomembrane (GMB), of 
which one hole is in any wrinkle of length L, underlain by a material with hydraulic conductivity, 
kLa, where the geomembrane is in direct contact with the clay liner and kLb in the unstressed zone 
beneath the wrinkle. hw=0.3 m, kC >1x10-2, (m/s), HL (CCL) =0.6 m, HL (GCL) =0.01 m, 
compressed (σv ≥ 100 kPa) 2b=0.1 m. Calculated numbers rounded to 2 significant digits.  

(1) (2) (3) (4) (5) (6) (7) 

Case Eq. L  
(m) 

θ  
(m2/s) 

kLa  
(m/s)  

kLb  
(m/s) 

Q 
(lphd)  

GMB on very permeable subgrade  1          0 - 1x10-3 - 49,000 
CCL alone  4          0 - 1x10-9 -   1,300   

GMB/CCL direct poor contact 2          0 1x10-7  1x10-9 -        15 
GMB/CCL direct good contact 2          0 2x10-8  1x10-9 -          3 

GMB/CCL wrinkle, poor contact 3  4    1000 1x10-7 1x10-9 1x10-9 1300 
GMB/CCL wrinkle, good contact 3    1000 2x10-8 1x10-9 1x10-9 910 
GMB/CCL wrinkle, good contact 3    1000 2x10-8 5x10-10  1x10-9 650 
GMB/CCL wrinkle, poor contact 3      200 1x10-7 1x10-9 1x10-9 400 
GMB/CCL wrinkle, good contact 3      200 2x10-8 1x10-9 1x10-9 180 
GMB/CCL wrinkle, good contact 3      200 2x10-8 5x10-10  1x10-9 130 
GMB/CCL wrinkle, poor contact 3        10 1x10-7 1x10-9 1x10-9 14 
GMB/CCL wrinkle, good contact 3        10 2x10-8 1x10-9 1x10-9 9 
GMB/CCL wrinkle, good contact 3        10 2x10-8 5x10-10  1x10-9 6 

       
       

GCL alone  4          0 - 5x10-11 - 1,300 
GMB/GCL direct poor contact 2          0 1x10-7 5x10-11 - 5.5 
GMB/GCL direct good contact 2          0 2x10-8  5x10-11 - 1 

GMB/GCL wrinkle, poor GCL & contact 3    1000 1x10-10 5x10-11  4x10-9 1100 
GMB/GCL wrinkle, good contact 3    1000 3x10-11 5x10-11 4x10-9 1100 
GMB/GCL wrinkle, poor contact 3    1000 1x10-10 5x10-11 4x10-10 140 
GMB/GCL wrinkle, good contact 3    1000 3x10-11 5x10-11 4x10-10 130 
GMB/GCL wrinkle, good contact 3    1000 3x10-11 5x10-11 5x10-11 34  

GMB/GCL wrinkle, poor GCL & contact 3      200 1x10-10 5x10-11 4x10-9 220 
GMB/GCL wrinkle, good contact 3      200 3x10-11 5x10-11 4x10-9 220 
GMB/GCL wrinkle, poor contact 3      200 1x10-10 5x10-11 4x10-10 29 
GMB/GCL wrinkle, good contact 3      200 3x10-11 5x10-11 4x10-10 25 
GMB/GCL wrinkle, good contact 3      200 3x10-11 5x10-11 5x10-11 7 
GMB/GCL wrinkle, good contact 3        10 3x10-11 5x10-11 4x10-7 1100 

GMB/GCL wrinkle, poor GCL & contact 3        10 1x10-10 5x10-11 4x10-9 11 
GMB/GCL wrinkle, poor contact 3        10 1x10-10 5x10-11 4x10-10 1.4 

  



 

Table 7. Summary of permeation tests on seams below wrinkles at 250 kPa (modified from 
Brachman et al. 2016 and Joshi et al. 2017b, 2018) under a hydraulic head of 0.3 m and an 
applied stress of 250 kPa to the gavel drainage layer above the geomembrane. Rounded to 2 
significant digits.  

GCL 
type a 

Orientation 
with wrinkle 

Overlap 
width 

Supplemental 
bentonite 

Λ b 

(1) (2) (3) (4) (5) 
 Single panel (no seam) reference 1 

GCL2 Parallel 50 None >200,000 
GCL2 Parallel 150 400 g/m  0.2 
GCL4 Parallel 150 Groove 1.8 
GCL2 Perpendicular base case c 0.8 

GCL1&2 Perpendicular 150 400 g/m 2.3 d 
GCL4 Perpendicular 150 Groove 2.5 e 
GCL3 Perpendicular 150 Groove 370 f 
GCL5 Perpendicular 300 400 g/m 1 
GCL5 Perpendicular 300 Impregnated 2300 g 
GCL6 Perpendicular 300 Impregnated 4.6 

Notes: a GCL1: fine granular bentonite, a woven thermally treated carrier geotextile. GCL2: fine 
granular bentonite, a woven/nonwoven (scrim reinforced) thermally treated carrier geotextile. 
GCL3: coarse granular bentonite, a woven carrier geotextile. GCL4: coarse granular bentonite, a 
nonwoven carrier geotextile. GCL5: powdered bentonite, a woven/nonwoven (scrim reinforced) 
thermally treated carrier geotextile. GCL6 powdered bentonite, a woven thermally treated carrier 
geotextile. b Λ = (flow in Test) / (flow with no seam). c 0.15 m of panel over single panel below 
wrinkle and no preferential path through the single panel.  d average of 3 tests (Λ:0.8, 2.7, 3.3). e 
average of 3 tests (Λ: 2.0, 2.4, 3.0). f average of 2 tests (Λ: 330, 410). g average of 2 tests (Λ: 
1500, 3100) 

 

  



 

Table 8. Effect of various factors on length of Stage I, tI,  and time to nominal failure, tNF, of 
HDPE geomembranes immersed in fluid. Numbers rounded to 2 significant digits.  

Row Immersion fluid T 
(oC) 

GMB  & 
thickness 

(mm) 

Std- 
OITo 
(min) 

HP- 
OITo 
(min) 

SCRo 
(hrs) 

t
I 

# 

(yrs) 

t
NF

* 

(yrs) 

 t
NF

 

Ratio 
(-) 

Ref 

 Effect of geomembrane properties 

1 MSW L1 85 MxA-1.5 110 250 720 0.3 1.2 1.0 a 

2 MSW L1 85 MxB-1.5 140 790 330 0.3 1.6 1.4 a 

3 MSW L1 85 MyC-1.5 170 960+ 1000 0.4 2.6 2.2 a 

           

4 Brine: pH=8.7 85 MxC-1.5 160 960 800 2.2 2.1 1.0 b 

5 Brine: pH=8.7 85 MxA-1.5 91 260 720 1.4 2.5 1.2 b 

6 Brine: pH=8.7 85 MyEW-1.5 180 620 4000 2.4 3 1.4 b 

7 Brine: pH=8.7 85 MyE-1.5 160 1100 5200 2.3 15 7.1 b 

8 Brine: pH=8.7 30 MxA-1.5 91 250 720 14 8.7 1.0 b 

9 Brine: pH=8.7 30 MxC-1.5 160 960 800 21 11 1.3 b 

10 Brine: pH=8.7 30 MyEW-1.5 180 620 4000 14 17 2.0 b 

11 Brine: pH=8.7 30 MyE-1.5 160 1100 5200 24 55 6.3 b 

 Effect of leachate 
12 MSW L3 30 MyC-1.5 170 960+ 1000 24 53 1.0 c 
13 MSW L1 30 MyC-1.5 170 960+ 1000 28 59 1.1 c 
14 MSW L2 30 MyC-1.5 170 960+ 1000 21 64 1.2 c 
15 MSW L4 30 MyC-1.5 170 960+ 1000 27 83 1.6 c 
16 MSW L5 30 MxC-1.5 170 960 800 89 - - d 
17 ML1: pH=0.5 30 MxC-1.5 170 960 800 54 - - - 
18 ML2: pH=1.25 30 MxC-1.5 170 960 800 48 - - e 

19 ML3: pH=2.0 30 MxC-1.5 170 960 800 48 - - e 

20 ML1S: pH=0.5 
+surfactant 30 MxC-1.5 170 960 800 19 - - e 

21 ML4: pH=9.5 30 MxC-1.5 170 960 800 43 - - f 

22 ML5: pH=11.5 30 MxC-1.5 170 960 800 39 - - f 
23 ML6: pH=13.5 30 MxC-1.5 170 960 800 25 - - f 
24 Brine: pH=8.2 30 MxC-1.5 170 960 800 21 - - f 

25 CL1: 0.5 ppm Cl2 pH=9.9 30 MxC-1.5 170 960 800 10 - - g 

26 CL2: 1 ppm Cl2    pH= 10 30 MxC-1.5 170 960 800 8.6 - - g 

 Effect of temperature 
27 MSW L1 60 MyC-1.5 170 960+ 1000 2.6 9 1.0 c 
28 MSW L1 50 MyC-1.5 170 960+ 1000 5.5 15 1.7 c 
29 MSW L1 40 MyC-1.5 170 960+ 1000 12 29 3.2 c 
30 MSW L1 30 MyC-1.5 170 960+ 1000 28 59 6.6 c 
31 MSW L1 60 MyA-2.0 130 380 5200 2.6 13 1.0 h 
32 MSW L1 50 MyA-2.0 130 380 5200 4.0 37 2.8 h 
33 MSW L1 40 MyA-2.0 130 380 5200 7.0 120 9.2 h 
34 MSW L1 30 MyA-2.0 130 380 5200 12 210 30 h 



 

 Effect of thickness 
35 MSW L2 30 MxA-1.5 140 240 1400 26 81 1.0 i 
36 MSW L2 30 MxA-2.0 150 260 1200 29 88 1.1 i 
37 MSW L2 30 MxA-2.5 140 240 620 32 130 1.6 i 
           
38 MSW L5 30 MxC-1.5 170 960 800 89 - - d 
39 MSW L5 30 MxC-2.0 170 960 950 89 - - d 
40 MSW L5 30 MxC-2.4 170 960 1100 89 - - d 

Std-OITo, HP-OITo , and SCRo are value sof material when test started and may vary with length of 
storage (see text). 
# Length of stage I based on Std-OIT; * Based on 150 hrs (50% GRI-GM13 at time); 

+low molecular weight HALS with high mobility 
a Abdelaal & Rowe (2015) based on 7 years of data; b Rowe and Shoaib (2017) 4 years data; c 
Abdelaal et al. (2014) 9 years of data; d Rowe and Ewais (2014c) 1 year data; e  Rowe and Abdelaal 
(2016) 3 years data; f Abdelaal & Rowe (2017) 3 years data; g Abdelaal et al. (2019b) 3-7 years data; h 
Ewais et al. (2018) 17 years of data; i Rowe et al. (2014c) 7 years of data; 

MSW L3- surfactant, trace metals, salts in RO water with Eh=-120 mV, pH~6.5 c 
MSW L1- surfactant, trace metals, salts, volatile fatty acids in RO water with Eh=-120 mV, pH~6.5 c  
MSW L2- surfactant, trace metals in RO water with Eh=-120 mV, pH~6.5 c 
MSW L4- surfactant, trace metals, volatile fatty acids in RO water with Eh=-120 mV, pH~6.5 c 
MSW L5- surfactant, trace metals mixed with tap water c 
Brine- 200000 mg/L sodium salts (chloride, carbonate, bicarbonate) b 
ML1-ML5 – mining solutions with different pH e, f 

 
  



 

Table 9. Depletion adjustment factors, Ra, for geomembranes in composite liner vs immersed in 
leachate. 

Ref Rowe et al. (2009) Rowe and Rimal (2008a,b) Rowe et al. (2010, 2013) 
GMB MyA20 MyB15 MxA15 
Thickness (mm) 2 1.5 1.5 
(1) (2) (3) (4) (5) (6) 
 Based on Eq. 5 

and data from 
GMB immersed in 

leachate, water 
and air for ~9 

years 

270 g/m2 GTX 
protection 
layer over 

GMB with a 
over GCL for  

~3 years 

15 mm of sand 
sandwiched between 
two  270 g/m2 GTX 

protection layer, 
GMB, over GCL for  

~3 years 

580g/m2 GTX 
protection 
layer over 
GMB over 

GCL for  ~3 
years 

200 g/m2 
GTX over 

150 mm sand 
over GMB 
over GCL  

for  ~3 years 
Ra

* ~ 24 oC   3.6 3.7 4.9 6.4 10.6 
Ra at 55oC   2.9 3.3 4.4 3.1 4.7 
Ra at 70oC   2.7 3.1 4.2 2.3 3.3 
Ra  at 85oC   2.5 2.9 4.0 1.7 2.4 
Average (24-55oC) 3.3 3.5 4.7 4.8 7.7 
Average (24-85oC) 2.9 3.2 4.4 3.4 5.2 

* Depletion adjustment factor Ra = ratio of the depletion rate for a geomembrane immersed in 
leachate to that in the composite liner at a given temperature 

 

 

  



 

Table 10. OIT depletion time, tI, and time to nominal failure, tNF, immersed in MSW leachate 
and in a composite liner in a MSW landfill (assuming negligible tensile strains in the HDPE 
geomembranes). Numbers rounded to 2 significant digits.  

      Immersed in 
MSW leachate 

Composite 
liner  

Protection 
(Comment) 

T 
(oC) 

GMB  & 
thickness 

(mm) 

Std- 
OITo 
(min) 

HP- 
OITo 
(min) 

SCRo 
(hrs) 

t
I 
 

(yrs) 

t
NF

 

(yrs) 

t
I 
 

(yrs) 

t
NF

 

(yrs) 
Ref 

None (Eq.5) 

60 MyA-2.0 130 380 5200 2.6 13 7 54 a 

50 MyA-2.0 130 380 5200 4.0 37 12 150 a 

40 MyA-2.0 130 380 5200 7 120 23 470 a 

30 MyA-2.0 130 380 5200 12 390 40 720 a 

270 g/m2 GTX 

60 MxB-1.5 140 660 >400 1.9  6.2  b 

50 MxB-1.5 140 660 >400 3.7  12  b 

40 MxB-1.5 140 660 >400 7.5  26  b 

30 MxB-1.5 140 660 >400 16  58  b 

540 g/m2 GTX 
+ 15 mm sand 

60 MxB-1.5 140 660 >400 1.9  8.3  c 

50 MxB-1.5 140 660 >400 3.7  17  c 
40 MxB-1.5 140 660 >400 7.5  35  c 
30 MxB-1.5 140 660 >400 16  76  c 

580g/m2 GTX 

60 MxA-1.5 110 250 720 2.2  6  d,e,f 
50 MxA-1.5 110 250 720 4.7  15  d,e,f 
40 MxA-1.5 110 250 720 11  40  d,e,f 
30 MxA-1.5 110 250 720 26  100  d,e,f 

200 g/m2 GTX 
+ 150 mm 
sand 

60 MxA-1.5 110 250 720 2.2  9  d,e,f 
50 MxA-1.5 110 250 720 4.7  22  d,e,f 
40 MxA-1.5 110 250 720 11  59  d,e,f 
30 MxA-1.5 110 250 720 26  170  d,e,f 

Projected  
Ra  = 4 

35 MyA-2.0 130 380 5200 9.0 210 36 840  

35 MxB-1.5 140 660 >400 11  44   

35 MxA-1.5 110 250 720 15  60   

a Ewais et al. (2018); b Rowe and Rimal (2008a); c Rowe and Rimal (2008a); d  Rowe et al. (2010b, 
2013b); e  Rowe et al. (2013b) ; f Rowe et al. (2014c). 
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