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MiINIMUM THICKNESS OF COMPACTED SOIL
LINERS: 1. STOCHASTIC MODELS

By Craig H. Benson' and David E. Daniel,>2 Members, ASCE

ABsTRACT: Regulatory agencies often specify a minimum thickness of compacted
soil liners that will ensure that the liner performs adequately. No consensus has
been formed, however, on an appropriate minimum thickness. In some states soil
liners may be as thin as 60 cm (2 ft), whereas in other states soil liners are required
to be at least 360 cm (12 ft) thick. Difficulties encountered in the analysis of soil
liners, such as uncertainties in construction, flow in macropores, and spatial vari-
ability of hydraulic. properties, and variability in past experiences of regulatory
agencies are the most likely reasons for the lack of consensus on minimum thickness.
In the present paper, the first in a two-part series, two models of fluid flow in
compacted soil liners are described. These models incorporate flow in macropores,
spatial variability, and uncertainty via probability theory, but only consider ad-
vective transport in saturated soil. In the second paper, the models are used to
identify an appropriate minimum thickness of soil liners.

INTRODUCTION

Compacted soil liners are earthen barriers used to minimize the movement

- of liquids into or from landfills, surface impoundments, and other facilities

that contain materials that can contaminate groundwater. In an effort to
protect the environment, regulatory agencies typically specify a minimum
thickness of soil liners that will ensure the liner performs adequately. Al-
though definitions of performance vary, adequate performance requires that
a soil liner be physically stable (foundation and side slopes), have a relatively
long time before leakage first occurs, and have a small flux subsequent to
the commencement of leakage. No consensus has been formed, however,
regarding a minimum thickness that satisfies these performance criteria. The
lack of consensus is evident in wide variation in minimum thickness, 60—
360 cm (2-12 ft), that has been documented by Goldman et al. (1988).

In the present paper, the first in a two-part series, the formulation, math-
ematical development, and verification of two models of fluid flow in com-
pacted soil is described. The first model simulates flow as a continuum
process and the second model simulates flow in macropores. Only advective
transport of conservative solutes is considered. The models described in the
present paper also incorporate the spatial variability of the hydraulic prop-
erties of the soil by employing probability theory; hence, they are stochastic
models. Furthermore, the performance of soil liners is measured by the
minimum time of travel, herein called the first-passage time, and the mag-
nitude of the flux subsequent to first passage.

In the second paper of the series (Benson and Daniel 1994), the stochastic
models are employed to evaluate the sensitivity of distributions of first-
passage time and flux to the thickness of a soil liner and the hydraulic
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properties of the soil. The distribution of flux (interpreted in terms of hy-
draulic conductivity) is compared with a statistical analysis of field mea-
surements of hydraulic conductivity and conclusions are drawn with regard
to minimum thickness.

PATTERNS OF FLUID FLOW IN SOIL

Continuum versus Discrete Flow Fields

Traditional analyses of flow in compacted soil assume that liquid flows
in soil as a continuum process (Freeze and Cherry 1979). By definition, a
continuum process requires that the pressure, density, and viscosity of the
liquid to be functions that vary smoothly from point to point in the entire
control volume (Corey 1977). The validity of a continuum analysis to de-
scribe flow in soil, however, is predicated on the assumption that the flow
field is observed at a sufficiently large scale compared to the scale of the
pore size and spacing. Under the assumption of a continuum, the analysis
employs hydraulic conductivity and porosity as the spatially averaged prop-
erties of the soil.

Flow in Compacted Soil Liners

Patterns of flow in compacted soil are sensitive to the methods used during
preparation and compaction of the soil. Some recent studies have shown
that liquid flowing through compacted soil does not behave as a continuum
process, but instead the liquid moves through relatively large widely spaced
pores that represent only a small percentage of the total volume of the soil.
These large pores, called macropores, are of irregular size and orientation
and act as discrete channels for flow. Fig. 1 illustrates the patterns of flow
found by several investigators (Anderson et al. 1991; Elsbury and Sraders
1989; Rogowski 1990). Through the use of dyes or tracers, the investigators
have found liquid to travel vertically downward in macropores within a lift
of soil, and then to spread horizontally in a planar region, called the interlift -
zone, that exists between adjacent lifts. The liquid continues to spread in |
the interlift zone until it reaches another macropore in the lower lift. It has
been postulated that the ability for liquid to flow in the interlift zone has a
significant effect on the performance of soil liners.

- Macropores Macropores
Through Which Through Which
the Front Has the Front has

Advanced Not Advanced

FIG. 1. Flow in Discrete Macropores in Compacted Soil Liner
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The observations of these investigators are not necessarily a general rep-
resentation of flow in compacted soils. The test pad constructed by Elsbury
and Sraders was compacted slightly dry of optimum with a moderate size
roller, which can result in incomplete remolding of clods and large interclod
voids (Benson and Daniel 1990). Furthermore, the clods were large and in
some instances were larger than the thickness of a lift (=15 cm). Hence,
the construction methods used by Elsbury and Sraders may have been con-
ducive to the presence of large interclod voids. The test pads built by Ro-
gowski (1990) and Anderson et al. (1991) were also constructed with equip-
ment smaller than equipment ordinarily used to build soil liners. Hence,
the results shown in their studies may reflect an atypical presence of un-
deformed clods and large interclod voids.

Other investigators have found that liquid tends to move through com-
pacted soil as a relatively smooth, but irregular front (e.g., Albrecht et al.
1989) as shown in Fig. 2. Apparently, the soils used in these studies were
compacted with heavy machinery that deformed the clods and eliminated
the interclod voids during compaction. Hence, the soil was devoid of large
macropores that act as conduits for rapid flow in the lifts. Undoubtedly,
the voids through which the liquid flowed in these experimental liners were
small and closely spaced; hence, the flow appeared to be a continuum
process.

Patterns of flow in most compacted soil liners are likely to appear some- -
where between the extremes of a discontinuous network of discrete macro-
pores and a smooth continuum process. A smooth front is probably realized
in well-compacted portions of the liner and flow in macropores probably
occurs in regions in which the soil was processed improperly or the com-
pactive effort was inadequate. In some regions, both types of flow fields
probably exist and interact.

One-Dimensional versus Three-Dimensional Flow

Flow in any soil is three dimensional because the pores vary in orientation,
but it is difficult and not always necessary to model three-dimensional flow.
In a well-compacted soil liner, the flow field will exhibit some characteristics
of three-dimensional flow, but the majority of the flow should be one di-
mensional because the hydraulic gradient is vertical and the hydraulic prop-

Wetting
Front 7

Lift

Soil
Liner
FIG. 2. Flow as Continuum Process in Compacted Soll Liners
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erties vary smoothly as if the soil is a continuum. Nonetheless, a one-
dimensional analysis may be in error because the flow must pass through
zones of low conductivity that would normally be circumvented in three-
dimensional flow.

If flow occurs primarily through macropores and the interlift zone, how-
ever, a one-dimensional analysis will not suffice. Liquid must be able to
travel vertically through macropores within the lifts and horizontally in the
interlift zones. The nature of the discrete flow field requires that a multi-
dimensional analysis be performed.

Two models are presented in this paper: one-dimensional flow in a con-
tinuum and multidimensional flow through macropores. Indeed, soil liners
probably exhibit characteristics expected of both models, but difficulties
prevent modeling both types of flow concurrently. It is expected that these
models serve to bracket the actual behavior of soil liners.

SPATIAL VARIABILITY OF HYDRAULIC PROPERTIES

The hydraulic properties of compacted soil are spatially variable and can
fluctuate significantly within short distances. For example, Fig. 3 shows
hydraulic conductivity measurements obtained by Rogowski (1990) on a
large test pad of compacted clay constructed with three lifts that were 10
cm thick. The pad was partitioned into 250 squares (1 m X 1 m), ponded
with water, and outflow from drains beneath the squares was measured.
Hydraulic conductivities, determined from the outflow measurements of
each square, are shown in Fig. 3. It is evident from Fig. 3 that significant
fluctuations in hydraulic conductivity exist in compacted soil. As a result of
these fluctuations, the hydraulic conductivity at any point in a soil liner is
subject to uncertainty.

Deterministic hydraulic analyses of spatially variable soil do not account
for uncertainty in a rigorous manner. By stochastic modeling, however,
incomplete knowledge of the hydraulic properties of soil and the uncertainty
associated with these properties can be mathematically incorporated into
an analysis. Analyses of soil properties (Vanmarcke 1977a), slope stability
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FIG. 3. Measurements of Hydraulic Conductivity on Test Pad [from Rogowski
(1990)) .
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(Catalan and Cornell 1976; Vanmarcke 1977b), dissipation of pore pressures
during consolidation (Hachich and Vanmarcke 1984), and foundation sta-
bility (Wu and Kraft 1967; Ronold 1990a, b) in spatially variable soils have
been successfully performed using stochastic methods. In the present paper,
stochastic models are used to describe how uncertainty and spatial variability
of compacted soil affect flow in soil liners.

ONE-DIMENSIONAL CONTINUUM MODEL

Fig. 4 depicts a vertical section of a soil liner covered with liquid to depth
H, that is simulated with the one-dimensional model. The section of soil is
composed of N lifts of thickness L; and the hydraulic conductivity X is a
random variable that varies spatially within each lift. The soil liner is as-
sumed to consist of numerous vertical sections that are similar to the section
in Fig. 4, but each section is described by a random, independent set of
hydraulic conductivities. Hence, Fig. 4 represents a single realization of a
vertical profile at a particular point in the soil liner.

Hydraulic Formulation

In this analysis, the following assumptions have been made: (1) The soil
is initially saturated with an average equivalent, saturated hydraulic con-
ductivity (K, )5 (2) the liquid is placed upon the liner instantaneously; (3) .
the depth of llquld covering the liner remains constant; (4) the flow is steady
and one dimensional; (5) the liquid does not affect the hydraullc conductivity
of the soil; and (6) there is no suction at the base of the liner. These
assumptions are admittedly idealized, but simplifications are necessary to
render the analysis tractable. For soil liners compacted wet of optimum,
however, the degree of saturation is generally in the range of 80-95%.
Hence, the assumption of steady, saturated flow is reasonable for soils
compacted wet of optimum.

Under these assumptions, the equivalent hydraulic conductivity K., of a
" vertical section through the liner can be written as a function of the hydraulic
conductivities K; and thicknesses of the lifts L,

casasel,
YT LE O

“

AAAS
~
’
=
—

FIG. 4. Random Vertical Section of Soll Liner in Continuum Model
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It should be noted that K., is the harmonic mean of the hydraulic conduc-
tivities of the lifts.
The flux V;is obtained by combining Darcy’s Law with (1). Flux is defined

here as flow rate per unit area. Darcy’s law, for the section of the liner
shown in Fig. 4, can be written as

N
H, + 21 L,
Vo= Koy [ — | )

> L
i=1

where the term in parentheses is equal to the hydraulic gradient. If the lifts
are assumed to be of equal thickness (i.e., L, = L), the flux can be written
as:

-1
H, + NL 1 - :
V, = —L—L—-—<2 K) P 3)

i=1

The seepage velocity V, can be approximated by dividing the flux by the
effective porosity n, to account for the actual cross-sectional area of flow

V, H,+NL({& 1\ -
Vv, = = T In (; Ki) .............................. 4)

where effective porosity is defined as the volume of voids that are effective
in conducting flow divided by the total volume of the soil. Hence, the first-
passage time T for plug flow is

' NLn, (& 1
T=— (S ) .
H, + NL (; K,-) %)

Each variable in (3) and (5) involve some type of uncertainty. Thus, the
first-passage time T and flux V, are inherently random variables and their
probability distributions are funcnons of the distributions of the independent
variables in (3) and (5). Of all the independent variables, however, the
hydraulic conductivity is most significant because it can ﬂuctuatg several
orders of magnitude whereas fluctuations of the other variables are generally
much smaller. Hence, it is assumed that only hydraulic conductivity is a
random variable.

To simplify the analysis, hydraulic resnstnvnty R; is defined as the reciprocal
of hydraulic conductivity at a point in a lift. If hydrauhc resistivity is assumed
to be random and the thickness of the lifts and effective porosity are assumed .
to be spatially homogeneous and deterministic, (3) and (5) can be simplified
into linear combinations of hydraulic resistivity

Vi=m (2 R,-) ....................... P (6)

i=1




T = M2 2[ R, ............................................... (7)

where m; and m, = deterministic coefficients

= H, + NL = n,NL? ®)
1 L s 2 HL + N_L" ...........................

Stochastic Formulation

Probability Distribution of Hydraulic Conductivity and Resistivity

Hydraulic conductivity is often assumed to be lognormally distributed
(Benson 1989; Johnson et al. 1990, Bogardi et al. 1989; Krapac et al. 1989;
Richards and Thompson 1989). The validity of this assumption can be an-
alyzed statistically (Freeze 1975) and is illustrated by the histograms of
Rogowski’s (1990) data shown in Fig. 5. For example, Fig. 5(a) is a histogram
of Rogowski’s (1990) data after trends in the mean (i.e. the trend of de-
creasing hydraulic conductivity from upper left to lower right exhibited in
Fig. 3) and variance were removed by filtering. Fig. 5(b) is a histogram of
the logarithms of the data. As shown by the normal density function fitted -
to the data [Fig. 5(b)], the normal distribution reasonably describes the
logarithms of Rogowski’s (1990) measurements of hydraulic conductivity.
Hence, Rogowski’s (1990) measurements can be described by the lognormal
distribution.

The lognormal distribution has the density function

fx(k) = \/_.. L €XP [—% (E‘..%:JE) ] ........................ &)

where the parameters p. and o? are the log mean and the log variance,
respectively. Since hydraulic conductivity is assumed to be lognormal with
parameters . and o2, hydraulic resistivity is also lognormal, but with pa-
rameters —p and o2 (Aitchison and Brown 1957).

Transformation to First-Passage Time and Flux

Egs. (6) and (7) state that the first-passage time and flux are functions
of the summation of the hydraulic resistivities. Because each lift of soil is
constructed independently, it is plausible to assume that the spatial distri-
bution of resistivity in each lift is stochastically independent of the distri-
butions of resistivity in the other lifts. If Z is defined as the summation of
resistivities

then, by independence, the probability density function of Z, f,(z), is the
(N — 1)-fold convolution integral (Grimmett and Stirzaker 1982)

fa@ = [ [T | aatenes = 2oy ons — 2no)

“frfzi = rdfr(r) dridzydzy - - dzy oy o (11)
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where Z; is the sum of the first i + 1 resistivities (i.e., Z, = R, + R,,
Zz = Rl + Rz + R3, etC.).

The probability density function f,(z) can be determined by performing
the integration shown in (11). It is easier, however, to determine f,(z) by
exploiting the Fourier convolution theorem. The Fourier convolution theo- -
rem states that the Fourier transform of an (N — 1)-fold convolution in-
tegral, ®,(£), is the N-times product of the Fourier transformations of the
integral’s arguments, ®,(§) (Churchill 1972). Hence, the Fourier transform
of (11) can be written as

() = I=]l 3 (12)




where

Bplt) = f;fm(r)e-ie'dr U SRR (13)

is the Fourier transform of the density function of hydraulic resistivity. The
Fourier transform ®(£), is also known as the characteristic function of R.

If the hydraulic resistivities are assumed to be identically distributed,
which is plausible unless the soil or construction method vary from lift to
lift, (13) becomes (Grimmett and Stirzaker 1982)

®,(8) = [DriE] oo (14)

To obtain f;(z), the Fourier inversion of ®,(£) is performed

£(2) = f:ﬁ OOV dE s . (15)

The density functions of the first-passage time fT(t) and flux f.(f) are ob-
tained from f,(z) by probability integral transform (Grimmett and Stirzaker
1982). The relationships of f(t) and f=(f) to f,(z) are

=D (M '

AP f2f2<f> .......................................... (16)
1 t

fr(t) = ;]—z'fz <E) .......................................... (17)

Numerical Integration

Unfortunately, a- closed-form solution for the Fourier transform of a
lognormal density function cannot be obtained. Thus, the Fourier integrals
must be performed numerically. Several numerical methods were investi-
gated as means to perform the integration; the fast Fourier transform (Press
et al. 1986) proved to be the simplest method to implement and provided
the most stable solutions (Benson 1989).

Comparison of Numerical Results with Monte Carlo Simulation

To verify the numerical solution, the distributions of flux and first-passage
time have been compared to results obtained by Monte Carlo simulation.
The numerical procedure was used for all analyses described in the present
paper, however, because it is computationally efficient and provides precise
results, even in the tails. To perform the simulation, hydraulic resistivities
were randomly sampled from a lognormal distribution and the flux and first-
passage time were computed from (6) and (8). The sampling procedure was
repeated 800 times to obtain a sufficient number of realizations of V,or T
to represent the distributions. The parameters used in the analysis presented
herein are p. = —-17,¢%2 = 1.0, N = 6, L = 15cm, H, = 30 cm, and
n, = 0.40.

Fig. 6 is a comparison of analytic and Monte Carlo results for first-passage
time. The graph shows the reliability function R,(¢) obtained by the method
outlined in (7)-(13), and the reliability function estimated by Monte Carlo
simulation. The reliability function yields the probability that the first-pas-
sage time T exceeds a time ¢
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FIG. 6. Comparison of Analytic Solution and Monte Carlo Simulation of Reliability
Function for One-Dimensional Continuum Model

Ry(t) = f FAO)dt = PTZ ) oo (18)

- As shown in Fig. 6, the reliability functions obtained by the analytic pro-
cedure and simulation are similar, even in the tails of the distributions.
Comparisons made for different thicknesses (N = 1-20) and with other
parameters (0 = —11 to —20, 02 = 0.1-2.5) agreed equally well. The
numerical procedure was also examined to be sure the first-passage time
converged to the deterministic condition as the coefficient of variation of
hydraulic conductivity approached zero.

THREE-DIMENSIONAL MACROPORE MODEL

A schematic representation of the soil liner being analyzed by the three-
dimensional model is shown in Fig. 7. The analysis is performed on a cross-
sectional area of the liner A sufficiently large to adequately incorporate
variability. The liner is assumed to be composed of N lifts of thickness L
and between each lift is a planar region of thickness b that represents the
_ interlift zone. Each lift is divided into N, equal-sized square partitions that
are perforated by vertically oriented cylindrical channels that represent
macropores. Flow is assumed to occur only in the channels and the interlift
zones; hence, the matrix of the soil is assumed to be impervious.

To simplify the analysis, only saturated flow was considered. Often times
the formation of macropores is associated with soil liners compacted dry of
optimum where the degree of saturation may be less than 80%. Under these
unsaturated conditions, significant suctions may be present and the unsat--
urated hydraulic conductivity will be lower than expected under saturated -
conditions. These effects are ignored by assuming the soil is saturated.
However, the combined effects of suction (which increases the hydraulic
gradient) and lower hydraulic conductivity tend to compensate each other
when combined in Darcy’s law. As a result, the rate of flow in unsaturated
and saturated liners may not be substantially different. Nevertheless, with-
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out a more detailed analysis, it is difficult to determine how unsaturated
conditions will affect the first-passage time. In the long-term condition,
however, the liner will eventually become saturated. Hence the results re-
garding flux (or equivalent hydraulic conductivity) should not be affected
by the assumption of saturation.

Hydraulic Formulation

To determine the distributions of first-passage time and flux, a hydraulic
model must be formulated that relates the properties of the liner to the
properties of the flow field. The interlift zone, shown in Fig. 8, is assumed
to behave as a confined aquifer subjected to injection wells (channels above
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the interlift zone) and discharge wells (channels below the interlift zone).
A linear flow equation is used to compute the flow rate Q; for each channel.
For the jth channel, Q; is

Q] = Jl(hll - h2]) .......................................... (19)

where J; = flow coefficient of channel j; h;; = total hydraulic head at the
top of channel j; and h, = total hydraulic head at the bottom of channel
j. To ensure the flow was laminar, Reynolds numbers were checked and
were found to be far below critical values (=2,000) for the transition to
turbulence (Streeter and Wiley 1978). A discussion of the method to de-
termine J; is described in a later section. ‘

The Theim equation for radial flow in a confined aquifer is used to
determine the hydraulic head H;, at any point k in the ith interlift zone

1 Ni
H, = 7D ; QiIn(ry) + Wi oo (20)

where N; = number of channels that interact with the ith interlift zone;
H;, = hydraulic head at any point k in the ith interlift zone; r; = radial
distance between point k and jth channel; T\) = transmissivity of the ith
interlift zone; and W, = a constant. When the point k coincides with the
location of channel j, r;, is taken as r;, the radius of the channel.
Although the Theim equation is commonly used for radial flow to a well
located in a porous medium, in this analysis it describes flow in a planar
zone between lifts (Fig. 7). This application is valid because the Theim
equation is derived by integrating the Laplace equation and applying bound-
ary conditions corresponding to laminar flow in a cylindrical control volume
with a point source at its center. In this capacity, however, transmissivity
is actually a laminar flow coefficient for flow in the planar zone rather than
a hydrogeologic variable corresponding to flow through porous media.
Substitution of (19) into (20) yields

1 & :
Hl'k = —2:;—7:—{'—) Z J](hl] - hzj)ln(rjk) + W,' ....................... (21)

~ which is written for each channel in each interlift zone.

To ensure conservation of mass, continuity equations are written for each
interlift zone that require all flow into an interlift zone to leave the interlift
zone

(2 Qj). _ ( 5 Q,) ......................... TTUTTR (22)

Substitution of (19) into (22) yields

[NE Thy — hz,.)]. . [NE Jy(hy — hz,-)] .................... (23)

n

which is written for each interlift zone. ‘

The hydraulic problem is solved by computing the heads at the end of
each channel and the constants W, for each interlift zone. In hydrogeologic
practice, W, is normally specified as the undisturbed hydraulic head far from
the well. In this analysis, W; serves a similar function, but it is solved for
directly when the solution for the heads is obtained. Eq. (21) is written for
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both ends of each channel where the location i in (21) corresponds to the
center of the channel. This set of equations is combined with the continuity
~ equations, (23) written for each interlift zone to form a linear system of .

equations of the form ;

CAH = C oo, (24)

The matrix A consists of coefficients that multiply the hydraulic heads and
" the constants W,. The vector H is composed of the unknown hydraulic head
at the end of each channel and the unknown constants W;. Boundary con-
ditions and zeros comprise the vector C. To solve for the heads, (24) is
inverted to obtain the head vector H.

First-Passage Time, Flux, and Tortuosity

First-Passage Time

The first-passage time 7 for a particular realization is computed by de-
termining the minimum time of travel through all possible pathways that
penetrate the entire thickness of the liner. To obtain the time of travel for
each path, the time of travel in the channels and the interlift zones is
computed and added. The time of travel within the jth channel ¢ is computed
by combining (19), the radius of the channel r;, and the thickness of a
lift L

[ = Lzr}
j J(hy; - hz,‘) ...........................................

A similar expression yields an approximate time of travel in the interlift
zone t;, between channels j and k in the upper and lower adjacent lifts

= dib
jk T,(hzl _ hlk) ...... R I

where d;, = radial distance between channels j and k. Eq. (26) is a direct
application of Darcy’s law and is exact only if the hydraulic gradient is
directed from channel j to channel k; otherwise, it yields a time of travel
that is too short. Hence, the approximation is conservative. Furthermore,
because the transmissivity is a flow coefficient for flow in the planar interlift
zone and not a porous medium, a porosity term is not included in (26).

Eq. (26) was used to avoid implementing a complex algorithm to find the
exact flow path in interlift zones that have highly nonlinear fields of hydraulic
head. No attempt was made, however, to evaluate the error of the ap-
proximation. Even with the approximation, execution times were very long
(>15 h) because of the recursive algorithm required to find the path with
shortest time of travel. An exact analysis would require implementing an
algorithm for flow paths in each step of recursion and would increase exe-
cution times substantially.

Flux Emanating from Base of Liner

The flux that emanates from the base of the liner Vis obtained by adding
the flow rates of liquid exiting the channels in the bottom of the liner and
dividing by the area A. The flux also can be interpreted in terms of an
equivalent hydraulic conductivity K., by Darcy’s law
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where 1,, = average vertical hydraulic gfadient.

Tortuosity

The tortuosity 7 is the measure of the irregularity of the pathway of first
passage and is defined as the length of the pathway of first passage, L,
divided by the thickness of the liner

where N = number of lifts. Tortuosity reflects the distance the liquid travels
in the interlift zone. If the liquid flows only vertically downward (no hori-
zontal flow in the interlift zone), the tortuosity is 1; if the liquid travels in
the interlift zones, the tortuosity is greater than 1.

Stochastic Formulation

The hydraulic model formulated in the preceding section can be gener-
ically applied to any random realization of the soil liner shown in Fig. 7.
To incorporate spatial variability, Monte Carlo simulation is used to trans-
form the distributions of hydraulic properties to distributions of first-passage
time, flux, and tortuosity. For each scenario, numerous random realizations
of a soil liner are generated by randomly sampling the properties of the
liner (e.g., size and location of the macropores) from their probability dis-
tributions. Then, the hydraulic behavior of the liner is analyzed as if the
problem is deterministic. Results, such as the first-passage time and flux,
are recorded for each realization and a statistical analysis is performed on
the collection results when the simulation is complete. The probability dis-
tributions assigned to the properties of the liner are described in the fol-
lowing sections and are summarized in Table 1.

Number and Location of Channels

A truncated two-dimensional Poisson distribution was used to assign the
number of channels N, in each partition. Table 1 includes the density func-
tion of the truncated Poisson distribution and the densities of other distri-
butions used to describe the soil liner. The selection of the Poisson distri-
bution was arbitrary, but it is commonly used to describe events that occur
independently in a span of time or region of space (Ang and Tang 1975).

The Poisson distribution has a finite probability of realizations of zero,
but a realization of no channels in a partition implies that the partition
cannot conduct flow. Realizations of no flow seem unlikely; hence, the
Poisson distribution was truncated to eliminate realizations of zero. The
probability mass associated with realizations of zero was added to realiza-
tions of one channel.

An underlying assumption of the Poisson distribution is that events, in
this case the occurrence of channels, are uniformly distributed in space. In
an actual soil liner, the macropores may be grouped in zones where the
molding water content was too low or the compactive effort was insufficient
to adequately deform clods and eliminate interclod voids. Nevertheless,
since little is known about the statistical properties of macropores, a more
complex scheme to distribute the channels seem unwarranted. Eq. (21),

142




"¢ X § suoisuowip yum asenbs a1e suoniied.

ﬁ A = vm-_ a0 22 - oy

“Ud — g/ 1 I [euzoudor] a- ‘[ “2U0Z JIIAIUL JO ANAISsIWSUeL],
N.w.u:bvso m| dxo N.W»nsbeU.FN A _ Au§vu—\.\. AO < uv\v u«.\ .—.—O_u
\e su —v°NJ 1 °N [ewwiou pajesuni], a-€ -nied ui spoUUBYD JO BIIR [BUOIIIS-SSOID)
) )
-_—= NA. A m —_ = X
1 @Y I 24 wiIoju) a-€ Luonuned ur (f ‘Y) sjpuueyd Jo uoneso]
iU ONfey _ g - ON[ ¢y — U ‘() = N
2N @1 = w1+ 02 = ()0 = w0 = (Y uoSsI0g pajeduni], a-1 >N ‘uonnied/sppuueyd Jo ISqUINN
Folil
Vil axe X2
. H—-yu/1 I [ewzougo] d-< pue -1 y ‘uonmued e jo "puod dsineipAH
¥ (€) @) (1)
uonouny Ausueg uonnquisip jopow Auadoid
pawnssy ajgeolddy

sojuadoid djinespAH jJo suopnquisia pawnssy ‘L 378V1

143




however, requires that channels in the same or adjacent lifts not overlap
To avoid this inconsistency locations of the channels are constrained by
assigning, from the uniform distribution, new locations for the overlapping
channels.

Size of Channels

Little is known about the statistical properties of the size of macropores.
Because of the lack of information, the cross-sectional area of macropores
was related to the effective porosity that generally is normally distributed
(Freeze 1975). The cross-sectional area of channels is linearly related to the
effective porosity; i.e.

Normally distributed random variables are linearly reproductive. Hence,
because A,; is linearly related to n,, A, was assumed to be normally dis-
tributed. Admittedly, this assumption is ad hoc, but virtually no data exists
to describe the geometry of macropores and a reasonable technique was
needed to account for variability in channel size.

To obtain the parameters of the distribution A_;, the mean cross-sectional
area A. was related to the effective porosity by:

A = Sn,

A small coefficient of variation (Cv4. = 10) was used to avoid realizations
of very large or very small channels. For typical parameters used in the
analyses (e.g., n, = 0.05, N, = 100 channels/m?, S = 20 cm, and L = 15
cm; Cy,, = 10), 95% of the macropores had a radius in the range of 0.6-
0.9 cm.

Flow Coefficients ‘ ‘ \

In this model, macropores are assumed to be vertically oriented cylindrical
channels. One method to compute the flow coefficients of the channels (and
the hydraulic conductivity of a partition) is to assume the channels are
capillary tubes. Then, the flow coefficient can be computed from the Hagen-
Poiseuille equation (Streeter and Wiley 1979):

Y gAZ :
J; = AH = Bmpl o rrrrteeterreeeeeeeeeesieeeiii (31)

where AH = change in total head; g = gravimetric acceleration; and v =
kinematic viscosity of water.

Macropores, however, are not capillary tubes. Instead, the flow path
through a macropore is tortuous and has continually varying aperture. A
partition with several large macropores might have very small hydraulic
conductivity if the aperture size of the macropores varied significantly and
their path through the liner was tortuous. Conversely, a partition containing
only one small macropore with smooth vertical walls may have very large
hydraulic conductivity. Because (21) cannot account for these conditions,
its use to calculate the flow coefficient may be inappropriate.

A simpler approach was used here. First, the hydraulic conductivity of a
partition K; was randomly sampled from a lognormal distribution. Then,
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the total flow through the partition Q (based on the sampled hydraulic
conductivity and Darcy’s law) was equated to the sum of the flows through
each channel in the partition. To compensate for reduced resistance in larger
macropores, the portion of the total flow assigned to each macropore was
weighted by the ratio of the squared cross-sectional area of a channel to
the sum of the squared areas of the channels; i.e.
2
J = K,S? A (32)

L 2 A2
j=1

In this way, larger macropores are weighted with larger flow coefficients
using a weighting scheme similar to Poiseuille’s equation, but the strict
hydraulics of flow in a capillary tube are avoided. The writers believe that
this approach permits a wider range of realizations that can occur in a soil
with macropores.

Transmissivity of Interlift Zone

A lognormal distribution was assumed for the transmissivity of the interlift
zone because transmissivity is linearly proportional to hydraulic conductivity
and hence should exhibit a similar distribution. No direct data is currently .
available on interlift transmissivity, however, to verify this assumption.

Number of Realizations

The number of realizations required for sufficient accuracy was deter-
mined by ensuring the first four moments of first-passage time and flux were
stable; i.e. the estimates of the moments did not change significantly with
additional realizations. A sensitivity analysis revealed that 600 realizations
were required before the first two moments stabilized, but 800 realizations
were necessary for the fourth moment to become stable. To be conservative,
1,000 realizations were used for all analyses. Benson (1989) provides a
comprehensive discussion of the stability of the moments.

Area of Analysis and Heterogeneity of Soil

The cross-sectional area of analysis A (Fig 7) and the number of partitions
N, must be selected to satisfy three criteria: (1) adequate representation of
three-dimensional heterogeneity; (2) adequate representation of distribu-
tions describing the channels; and (3) reasonable time to perform the sim-
ulation. To satisfy the first criterion, A must be large enough, and be divided
into a sufficient number of partitions, to simulate three-dimensional het-
erogeneity. When A and N, are increased to model heterogeneity, however,
the second and third criteria may not be satisfied. Small increases in A yleld
large increases in the execution time required to complete a simulation and
as N, is made larger, the distributions that describe the channels are not
preserved because partitions that are small have a probability of realizing
one channel that is large. Hence, the number, location, size, and flow
coefficients of channels will be 1mproperly represented if N, is large

The effect of diminished representation of the distribution describing the
channels is a limitation of the model caused by the assumption of flow that
occurs only in the macropores and not in the soil matrix. Hence, a com-
promise must be made between A, N,, and the execution time requ1red to
perform the simulation.
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Cross-Sectional Area

To determine A that adequately represents heterogeneity, the sensitivity
of the distributions of first-passage time T and flux F distributions were
examined by graphing the sample mean, T or V,, and variance, Var(T) or
Var(V;), as a function of A. Fig. 9 shows the sensitivity of these statistics
for a mean number of channels/m?, \, of 45, 100, and 175, and N, of 4.
The graphs show that the distributions are sensitive to A; T and Var(V))
become larger and V;and Var(V)) become smaller. Nevertheless, the changes
in the distributions become small when A exceeds 1,500 cm? and the sen-
sitivity to area is less pronounced when X\ becomes larger. Hence, A of 1,500
cm? was selected for use in subsequent analyses of sensitivity. For A of
1,500 cm?, a typical simulation required nearly 15 h to execute on a high-
speed personal computer. When the area was increased to 2,500 cm?, the
execution times rose to 48 h.

Number of Partitions

The number of partitions to be used in subsequent sensitivity analyses
was also identified by examining the sensitivity of T and Vito N,. It was
found that for N, of 4, three-dimensional heterogeneity was preserved and
the probability of zero channels per partition was small (Benson, 1989).
Hence, N, of 4 was selected for sensitivity analyses.
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Evaluation -

It is nearly impossible to verify a stochastic model. It is possible, however,
to evaluate whether the results of the model are consistent with expected
behavior. To check for consistency, the characteristics of the distributions
of first-passage time and flux were examined under various conditions.

First-Passage Time, Flux, and Transmissivity of Interlift Zone

The performance of a soil liner dominated by flow in macropores depends
on the ability for liquid to flow in the interlift zone. If the transmissivity of
the interlift zone is low, large amounts of energy will be dissipated as the
liquid flows between the lifts. Furthermore, the likelihood is small that liquid
will circumvent zones of low conductivity in the lifts by traveling a great
distance in the interlift zone. Instead, the liquid will travel downward in
pathways of lower conductivity that require a smaller expenditure of energy.
Hence, the first-passage time will be large, the flux small, and equivalent
hydraulic conductivity will be smaller than the mean hydraulic conductivity
of a single lift.

Conversely, if the transmissivity of the interlift zone is high, the liquid
will flow readily in the interlift zone and will travel far to reach favorable
zones of high conductivity. Hence, when the transmissivity is large, regions
in the lifts that have low conductivity become less important. Furthermore,
the first-passage time will be short, the flux will be large, and the equivalent
hydraulic conductivity will reach the mean hydraulic conductivity of a single
lift.

To determine if the model would yield this expected behavior, the sen-
sitivity to mean interlift transmissivity 7, was evaluated. Parameters for
input were: mean hydraulic conductivity K = 5 X 1077 cm/s; coefficient
- of variation of hydraulic conductivity Cy, = 150; coefficient of variation
of interlift transmissivity Cy,, = 0; N, = 4; mean number of channels A =
100 channels/m?; Cy, = 0;n, = 0.05; N = 6; H, = 30cm; L = 15 cm;
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and b = 3 cm. The mean transmissivity was varied from 3 X 10~8 cm?/s to
0.3 cm?s. Fig. 10 is a graph of mean first-passage time and mean equivalent
hydraulic conductivity as a function of transmissivity of the interlift zone.
The lower solid line corresponds to the time of travel for deterministic flow
T, computed with from Darcy’s law and corrected for the irregularity of
the flow path by multiplying by the square of mean tortuosity; i.e.

T = (NL%)?n,
d K(HL + NL) .........................................

where 7 is the mean tortuosity, (28), which was equal to 1.4, Fig. 10 shows
the expected result; as the transmissivity becomes larger, the mean first-
passage time decreases and approaches T,.

A similar result is shown in Fig. 10 with regard to the mean equivalent
conductivity K.,. A correction for length of the flow path was also applied
to compute K, ; i.e.

_ 1% 1%
K,=-H-= L (34)
I H, + NL
NLz

where I* = hydraulic gradient corrected for tortuosity. Fig. 10 shows that
K., rises as the transmissivity increases and reaches the mean hydraulic
conductivity of a lift (5 x 10~7 cm/s, the upper solid line) when the trans-
missivity is large.

Convergence to Deterministic Case

An additional check for consistency was conducted by removing the var-
iability in hydraulic conductivity, transmissivity of the interlift zone, and
area of the channels. The variability in number and location of the channels,
however, could not be removed because the Poisson distribution is used to
describe the number of channels. The same input parameters used to eval-
uate sensitivity to 7, were used to evaluate convergence, except Cyx was
varied from 0-200 and 7, was fixed at 0.3 cm?s to eliminate the influence
of the interlift zone. ,

Fig. 11 shows the coefficient of variation of first-passage time Cyr and
the coefficient of variation of flux C,, as a function of Cyk. As Cyy is
reduced, C, and Cvv, become smaller. When Cy is zero, Cy - is small but
not zero because the first-passage time depends on the number and location
of the channels in each lift (defined by the Poisson distribution) from which
the variability cannot be removed. Unlike C,, wa = 0 when C,x = 0,
which is exactly the result that is expected.

SUMMARY OF ASSUMPTIONS AND FORMULATION

Two models of flow in compacted soil liners have been presented in this
paper. One model considers one-dimensional flow through a series of hor-
izontal lifts and in each lift the hydraulic conductivity is assumed to vary
spatially. The other model simulates flow through a network of vertical
macropores that are interconnected by planar interlift zones. The soil is
assumed to be saturated in both models.

The primary assumptions used in the formulation of the one-dimensional
model were: (1) The soil is initially saturated with an average equivalent,
saturated hydraulic conductivity K.,; (2) the liquid is placed upon the liner
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instantaneously; (3) the depth of liquid covering the liner remains constant;
(4) the flow is steady and one dimensional; (5) the liquid does not affect
the hydraulic conductivity of the soil, (6) there is no suction at the base of
the liner, and (7) the distribution of hydraulic within each lift is lognormal
and is not spatially correlated to the distribution of hydraulic conductivity
in the other lifts. Standard equations for one-dimensional vertical flow through
horizontal layers were used to determine the first-passage time and flux and
characteristic equations were used to determine distributions for first-pas-
sage time and flux from the distribution of hydraulic conductivity. The
Fourier integrals used to obtain the characteristic functions were performed
numerically.

Flow in the macropore model is assumed to only occur in vertical cylin-
drical channels and in a planar zone between each lift. Because actual
macropores vary in aperture, orientation, and shape (and hence are not
smooth straight channels), the Poiseuille equation is not used to determine
flow coefficients for the channels. Instead, the coefficients are assigned by
requiring the sum of flows in all channels in a partition to equal the flow
through the partition based on a randomly assigned hydraulic conductivity
which is not correlated to the number of channels. The flow coefficients are
also weighted by their cross-sectional areas (i.e. bigger channels have larger
flow coefficients).

Heads in the planar interlift zone were computed using the Theim equa-
tion for radial flow in a confined aquifer. Channels in adjacent lifts are
assumed to be injection and discharge wells. The interlift zone is assumed
to be a planar zone of laminar flow. Thus, the transmissivity term in the
Theim equation is essentially a laminar flow coefficient rather than a hy-
drogeologic parameter.

First-passage time in the macropore model is obtained by computing the
time of travel in all pathways and then searching for the shortest time of
travel. To simplify the analysis and enhance computational efficiency, time
of travel in the interlift zone is computed by a direct application of Darcy’s -
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law between the channels. This assumption yields travel times that are too
short and hence is conservative.

To simulate spatial variability, probability distributions were assigned to
describe the properties of the channels and interlift zones and Monte Carlo
simulation was used to randomly sample variates from the distributions.
Several of the distributions had to be assigned arbitrarily because little data
is available to describe macropores. Table 1 summarizes the distributions
that were used.

Admittedly, some of the assumptions are simplistic and may not reflect
actual conditions in compacted soil liners. However, the simplifications were
necessary to keep the analyses tractable and practical. The reader should
consider the assumptions employed when interpreting results obtained with
the models and their application to actual field conditions.

CONCLUSION

The models that have been described in the present paper were developed
to evaluate how the variability of compacted soil affects the performance
of compacted soil liners. The models are intended to bracket the possible
patterns of flow that may occur in the field; one-dimensional flow in a
continuum and three-dimensional flow in a network of macropores. In the
companion paper (Benson and Daniel 1994), the models are used to evaluate
the minimum thickness of soil liners that is necessary to ensure adequate
hydraulic performance.

Based on previous studies, flow in compacted soil was assumed to exhibit
different patterns that depend on the methods of processing and compacting
the soil. For soil liners that are constructed with deformable clods and heavy
construction machinery, the flow field was assumed to be a continuum
because the scale at which the flow field is viewed is much larger than the
size and spacing of the interclod pores. For liners constructed of large, stiff
clods and lightweight machinery, the flow was assumed to occur primarily
in macropores within the lifts that are interconnected and form continuous
pathways. The models described in the present paper were developed to
- bracket these patterns of flow.

Previous studies have also shown that hydraulic conductivity of compacted
soil is spatially variable, which renders deterministic analyses of soil liners
difficult because the uncertainty of the soil properties is not incorporated
rigorously. In the present paper, stochastic methods have been used to
incorporate spatial variability and uncertainty in a rigorous manner.

It was found in this study that stochastic models can be developed that
incorporate spatial variability and uncertainty in hydraulic conductivity and
approximate the patterns of flow expected in soil liners. Two models have
been presented in this paper. One model simulates one-dimensional flow
in a spatially variable continuum. The other model approximates flow in a
spatially variable network of interconnected macropores. In both models,
distributions of first-passage time and flux were determined.
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APPENDIX ll. NOTATION

The following symbols are used in this paper:

A = cross-sectional area of liner for analysis;
A, = cross-sectional area of channels in partition;
C,. = coefficient of variation of random process X;
fx(x) = probability density function for random process X;
h;; = total head at top of jth channel;
h,; = total head at bottom of jth channel;
H;, = hydraulic head at point k in ith interlift zone;
H; '= depth of liquid covering liner;
I = average hydraulic gradient;
J; = flow coefficient for channel j;
K = hydraulic conductivity;
K., = equivalent hydraulic conductivity;
L = thickness of lift;
N = number of lifts;
n, = effective porosity;
N. = number of channels in partition;
N; = number of channels in ith interlift zone;
N, = number of partitions;
Q; = flow rate in jth channel,
R = hydraulic resistivity;
r; = radius of jth channel;
ri = radial distance between point k and ]th channel;
S = length of side of partition;
T = first-passage time;
T, = deterministic first-passage time;
t; = time of travel in jth channel;
ti, = time of travel between channels j and k
T® = transmissivity of ith interlift zone;
V; = volumetric flux emanating from base of liner;
V, = seepage velocity;
W, = constant for Theim equation in ith interlift zone;
v; = ith deterministic coefficient;
A = mean number of channels/m?;
0% = variance of random process X;
T =. tortuosity; and
®, = characteristic function for random process X.
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