BOISE RIVER STUDY

Ada County

Data Collected 1978

Final Summary October 1980

Department of Health and Welfare
Division of Environment
Statehouse
Boise, Idaho 83720

Water Quality Summary
No. 2
BOISE RIVER STUDY
Ada County

Data Collected 1978
Final Summary October 1980

Department of Health and Welfare
Division of Environment
Statehouse
Boise, Idaho 83720
SUMMARY OF BOISE RIVER STUDY

In Water Year 1978 a water quality study was conducted on the Boise River (Ada County, Idaho) from Lucky Peak Dam near the Ada/Boise County line southeast of Boise to the Star Bridge near the Ada/Canyon County line south of Star. The purpose of the study was to assess the impact of present point sources on the river and to obtain background information to develop effluent limitations for the City of Boise wastewater treatment facilities. The study provided monitoring at 14 mainstem river stations and at both Boise treatment plants on a monthly frequency. An intensive survey in November of 1977 included three additional point sources and eight tributaries. The parameter categories covered in the study are listed as follows:

- Temperature
- Dissolved oxygen
- pH
- Flow (Some taken)
- Bacteria
- Oxygen Demand
- Solids
- Nutrients
- Trace Inorganic Toxins
- Macroinvertebrates
- Periphyton
- Algal Assays

The water quality of the Boise River in Ada County was found to fluctuate with seasonal conditions. The river above Star was generally the best quality during the irrigation season, but some water quality problems were still evident. Sporadic bacterial violations of the primary contact recreation standard were recorded from the Capitol Boulevard Bridge in
Boise to the Star Bridge at all but two stations. Nutrient concentrations exceeded the recommended algal bloom potential of 0.02 mg/l for ortho phosphorous and 0.3 mg/l for total inorganic nitrogen from below the discharge of the City of Boise Lander Street wastewater treatment plant to the Star Bridge. In addition, trace or toxic amounts of total residual chlorine were noted at one sampling time below both the Lander Street and West Boise discharges. Irrigation return flows do not appreciably impact the Boise River until below Star.

During the non-irrigation season the water quality problems were generally worse except for bacteria. Bacterial violations for the secondary contact recreation standard occurred less often than irrigation season violations, and fewer river miles were impacted with violations found only from the Capitol Boulevard Bridge to the Linder Road Bridge on both the North and South Channels of the river. Nutrient concentrations were found to be considerably higher in the non-irrigation season, and concentrations exceeded trophic levels from Lucky Peak Dam to the Star Bridge. Turbidity values were abnormally high during the winter of 1978 from Barber Bridge to the Star Bridge.

Toxicity problems were also more evident during the non-irrigation season. Ammonia concentrations exceeded the unionized ammonia criteria of 0.02 mg/l in March of 1978 below the Lander Street facility, but at no time was the 0.04 mg/l criteria exceeded. The total residual chlorine concentration below the Lander Street discharge was always measurable and reached 0.2 mg/l in three out of five samplings. A trace of chlorine
was measured four out of five samplings at the Glenwood Bridge which is 2.8 river miles below the Lander Street discharge. The chlorine concentration below the West Boise facility was measured at 0.2 mg/l on one occasion. Iron and aluminum concentrations were also elevated in the river during the winter of 1978. The iron concentrations ranged from a low of 150 ug/l at Lucky Peak Dam in March of 1978 to a high at 2200 ug/l at Capitol Boulevard Bridge in December of 1977. Aluminum concentrations ranged from 100 ug/l at Lucky Peak Dam to 1400 ug/l at Barber Bridge in November of 1977. Fluoride concentrations exceeded recommended instream criteria on two occasions below the discharge for the Boise Geothermal Demonstration project.

A cursory examination of fecal coliform/fecal strep ratios (FC/FS) during bacterial violations indicate a varying origin for the bacteria. Some FC/FS ratios were considerably over four which would indicate a human source, but on other occasions or at other station locations for the same date, the ratios could be in the range of one to four or even under one which indicates a mixed source or a livestock source for FC/FS values under one. The major source for human pathogenic bacteria would be the sewage treatment plant discharges for the City of Boise, but an adequate disinfection process at the West Boise facility and planned improvements at the Lander Street facility will eliminate their impact on river bacterial numbers. Other bacterial sources include nonpoint sources on small tributaries, livestock operations along the river, urban storm runoff, and the duck ponds in Ann Morrison Park. In addition, the river is impacted by a high primary contact recreation (tubing)
usage during the summer months. Of these sources only tributary nonpoint
sources, livestock operations and urban storm runoff would experience
any future reductions from control measures.

If wastewater flows at the Lander Street facility are not increased in
size and dechlorination and aeration improvements are made, the chlorine
and ammonia toxicity problems will be eliminated below the Lander Street
discharge in all but extreme low flow conditions. At the West Boise
facility dechlorination, nitrification, and advanced secondary BOD_5
removal may be necessary to meet instream criteria and downstream dissolve
oxygen standards.

The high iron and aluminum concentrations in the winter of 1978 appear
to be abnormal since samples collected by the Water and Power Resources
Service (previously U.S. Bureau of Reclamation) during the preceding
year were considerably lower than the Water Year 1978 samples. The high
concentrations for the two metals and elevated turbidity levels during
the winter period were caused by road construction activities on Idaho
Highway 21 between the diversion dam for the New York Canal and Discovery
State Park. Heavy equipment which was operating in and near the river
above the diversion dam was resuspending fine clay materials which
increased turbidity and the iron and aluminum concentrations. When the
road construction work was completed and irrigation water was released
from Lucky Peak Dam in the spring of 1978, the turbidity, iron, and
aluminum problems disappeared.
The City of Boise wastewater treatment plants were found to cause a substantial increase in river nutrient concentrations. As high as a ten fold increase in the concentration of total phosphorus was noted below the Lander Street discharge in both the irrigation and non-irrigation seasons, and phosphorus levels were as much as doubled by the West Boise discharge. The nitrate concentrations below Lander Street exhibited a maximum of a five fold increase and a three fold increase was common below West Boise. Although no notable trophic problems have been discovered or reported for the Boise River in Ada County, a diel study in November of 1977 found dissolved oxygen concentrations to fall below 90% saturation and 6.0 mg/l both above and below the City of Boise discharges under night time algal respiration. During a similar study in August of 1978, the dissolved oxygen never dipped below 6.6 mg/l. The discrepancy between the two studies would raise a question as to whether the November 1977 study represents a normal circumstance for the Boise River under fall conditions. A comprehensive study on algal productivity in the river is needed before nutrient limitations should be considered for the Boise discharges.

Algal assays conducted by the Environmental Protection Agency (Manchester, WA) indicate that nitrogen was the primary limiting nutrient below the Geothermal Discharge and phosphorus was limiting above the Geothermal Discharge on December 27, 1977. On August 8, 1978, phosphorus limitation was found above the Geothermal Discharge and at Caldwell and the mouth of the Boise River. Nitrogen was limiting from below the Lander Street WTP to Star and at Notus. Metal inhibition did not appear to be a
problem with these two algal assay periods. All of the December 1977 samples assayed could be considered to be "highly productive." The results of the August 1978 assays are as follows: waters above the Geothermal Discharge and below Lander Street WTP appeared to be "moderate" to "highly productive"; Star appeared to be "moderately" to "highly productive" and the stations at Caldwell, Notus, and the mouth of the Boise River appeared to be "highly productive" reflecting elevated $\text{NO}_3^- + \text{NO}_2^-$ concentrations.

In summary, with disinfection, dechlorination, and aeration improvements at the present Lander Street treatment facility, the water quality of the Boise River above the Glenwood Bridge will improve. Under increased wastewater flows at the West Boise treatment facility, careful consideration must be given to adequate treatment processes which will maintain or protect the present water quality of the Boise River.
DATA INVENTORY

Boise River Below Lucky Peak Dam 2040138
Boise River Below Lander Street 2040121
S. Channel Boise R. at Linder Rd. 2040127
Boise River at Star Bridge 2040128

(Inventories for remaining stations (25) are available on request)
<table>
<thead>
<tr>
<th>INDEX</th>
<th>1310001</th>
<th>002740</th>
<th>06150</th>
</tr>
</thead>
<tbody>
<tr>
<td>NILES</td>
<td>0324,30</td>
<td>0391,30</td>
<td>063,10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>NUMER</th>
<th>MEAN</th>
<th>VARIANCE</th>
<th>STANDARD DEVIATION</th>
<th>COEFF VARIANCE</th>
<th>STANDERD ERROR</th>
<th>MAXIMUM</th>
<th>MINIMUM</th>
<th>BEG DATE</th>
<th>END DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>WATER TEMPERATURE</td>
<td>22</td>
<td>95,000000</td>
<td>22,65000</td>
<td>4.76345</td>
<td>50,14161</td>
<td>1.01557</td>
<td>17.00000</td>
<td>0.00000</td>
<td>76/12/06</td>
<td>78/09/19</td>
</tr>
<tr>
<td>ALTITUDE</td>
<td>1</td>
<td>278,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STREAM FLOW</td>
<td>17</td>
<td>2379.172</td>
<td>452894</td>
<td>2151.37</td>
<td>904272</td>
<td>521784</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TURBIDITY</td>
<td>10</td>
<td>411999</td>
<td>678181</td>
<td>266049</td>
<td>632086</td>
<td>823519</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONDUCTIVITY</td>
<td>85</td>
<td>000000</td>
<td>656222</td>
<td>251668</td>
<td>6301374</td>
<td>610076</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INTRAYE</td>
<td>12</td>
<td>77103</td>
<td>1906.103</td>
<td>000000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BOD</td>
<td>11</td>
<td>590909</td>
<td>142290</td>
<td>370803</td>
<td>430794</td>
<td>131867</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COD LOW LEVEL</td>
<td>7</td>
<td>21818</td>
<td>10187</td>
<td>319181</td>
<td>442191</td>
<td>962367</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PH</td>
<td>7</td>
<td>65454</td>
<td>094775</td>
<td>307856</td>
<td>40219</td>
<td>982226</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T ALK</td>
<td>11</td>
<td>374545</td>
<td>112274</td>
<td>105095</td>
<td>282901</td>
<td>319479</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HC3 ALK</td>
<td>11</td>
<td>374545</td>
<td>112274</td>
<td>105095</td>
<td>282901</td>
<td>319479</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COD ALK</td>
<td>11</td>
<td>100000</td>
<td>000000</td>
<td>000000</td>
<td>000000</td>
<td>100000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RESIDUE TOTAL</td>
<td>11</td>
<td>771818</td>
<td>459566</td>
<td>214375</td>
<td>277753</td>
<td>646365</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RESIDUE TOT NFLT</td>
<td>11</td>
<td>572727</td>
<td>354182</td>
<td>595132</td>
<td>103912</td>
<td>179439</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N3H4 N TOTAL</td>
<td>11</td>
<td>329290</td>
<td>001571</td>
<td>039634</td>
<td>120436</td>
<td>019956</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N2O TOTAL</td>
<td>11</td>
<td>309545</td>
<td>003084</td>
<td>002119</td>
<td>048523</td>
<td>000630</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N3H4 TOTAL</td>
<td>11</td>
<td>522877</td>
<td>008710</td>
<td>295164</td>
<td>564662</td>
<td>086995</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHUS TOT</td>
<td>11</td>
<td>005272</td>
<td>006762</td>
<td>026112</td>
<td>495221</td>
<td>007873</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIANIDE CH-TOT</td>
<td>10</td>
<td>014100</td>
<td>001650</td>
<td>012649</td>
<td>903569</td>
<td>040440</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHLORIDE CL</td>
<td>10</td>
<td>302166</td>
<td>156466</td>
<td>132167</td>
<td>379254</td>
<td>395812</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FLUORIDE</td>
<td>20</td>
<td>373304</td>
<td>000714</td>
<td>014794</td>
<td>022660</td>
<td>017467</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARSENIC AS-TOT</td>
<td>20</td>
<td>100000</td>
<td>000000</td>
<td>000000</td>
<td>000000</td>
<td>100000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BORON</td>
<td>20</td>
<td>128952</td>
<td>227274</td>
<td>11079</td>
<td>584578</td>
<td>241767</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CADMIUM</td>
<td>20</td>
<td>186856</td>
<td>274505</td>
<td>196824</td>
<td>902330</td>
<td>301758</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHROMIUM</td>
<td>20</td>
<td>254545</td>
<td>415175</td>
<td>201958</td>
<td>763532</td>
<td>429162</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COPPER</td>
<td>20</td>
<td>256522</td>
<td>398420</td>
<td>192805</td>
<td>771208</td>
<td>462024</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IRON FE-TOT</td>
<td>20</td>
<td>209091</td>
<td>227135</td>
<td>150710</td>
<td>720786</td>
<td>321311</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEAD</td>
<td>10</td>
<td>80801</td>
<td>90000</td>
<td>999987</td>
<td>124373</td>
<td>300000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NICKEL</td>
<td>20</td>
<td>500000</td>
<td>000000</td>
<td>000000</td>
<td>000000</td>
<td>500000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SILVER AG-TOT</td>
<td>20</td>
<td>157826</td>
<td>672332</td>
<td>259294</td>
<td>148457</td>
<td>540665</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZINC</td>
<td>20</td>
<td>226087</td>
<td>809340</td>
<td>284489</td>
<td>138043</td>
<td>593201</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALUMINUM AL-TOT</td>
<td>20</td>
<td>181429</td>
<td>104422</td>
<td>102190</td>
<td>563254</td>
<td>222997</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOT COLD</td>
<td>11</td>
<td>540909</td>
<td>135855</td>
<td>116557</td>
<td>215483</td>
<td>351432</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FFC COLD</td>
<td>11</td>
<td>190198</td>
<td>734634</td>
<td>271360</td>
<td>149248</td>
<td>818182</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FESTRIP</td>
<td>11</td>
<td>190099</td>
<td>729091</td>
<td>230017</td>
<td>141437</td>
<td>814332</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHOS-T ORTHO</td>
<td>10</td>
<td>001700</td>
<td>000314</td>
<td>017714</td>
<td>104196</td>
<td>005602</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td>Index</td>
<td>Miles</td>
<td>MUNISHP</td>
<td>Noise River Below Lucky Peak Dam</td>
<td>16001 IDAHO</td>
<td>Pacific Northwest</td>
<td>MIDDLE SNAKE</td>
<td>771222</td>
<td>0000</td>
<td>Class 00</td>
</tr>
<tr>
<td>-----------</td>
<td>-------</td>
<td>-------</td>
<td>---------</td>
<td>---------------------------------</td>
<td>------------</td>
<td>------------------</td>
<td>-------------</td>
<td>--------</td>
<td>-------</td>
<td>----------</td>
</tr>
<tr>
<td>Mercury Hg, Total UG/L</td>
<td>1316001</td>
<td>002740 06150</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>130700</td>
</tr>
<tr>
<td>Number</td>
<td>Mean</td>
<td>Variance</td>
<td>Standard Deviation</td>
<td>Coefficient of Variation</td>
<td>Standard Error</td>
<td>Maximum</td>
<td>Minimum</td>
<td>Beg Date</td>
<td>End Date</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>536364</td>
<td>0.014546</td>
<td>0.120605</td>
<td>0.224857</td>
<td>0.036364</td>
<td>0.900000</td>
<td>0.500000</td>
<td>7/11/15</td>
<td>7/8/09/19</td>
<td></td>
</tr>
<tr>
<td>INDEX</td>
<td>1310001</td>
<td>002740</td>
<td>06150</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>--------</td>
<td>-------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MILES</td>
<td>0324.30</td>
<td>0391.30</td>
<td>049.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PARAMETER</td>
<td></td>
</tr>
<tr>
<td>00010</td>
<td>WATER TEMP</td>
<td>CENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00042</td>
<td>ALTITUDE FEET</td>
<td>AB MSL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00061</td>
<td>STREAM FLOW</td>
<td>INST-CFS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00076</td>
<td>URR TRIDMTM HACH FTU</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00095</td>
<td>CONDUCTIVITY AT 25C</td>
<td>MICROMHO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00116</td>
<td>INTNSVE SURVY</td>
<td>IDENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00300</td>
<td>DO</td>
<td>MG/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00310</td>
<td>BOD</td>
<td>5 DAY</td>
<td>MG/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00335</td>
<td>COD</td>
<td>LOWLEVEL</td>
<td>MG/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00400</td>
<td>PH</td>
<td>SU</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00410</td>
<td>T ALK</td>
<td>CACO3</td>
<td>MG/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00425</td>
<td>FCO3 ALK</td>
<td>CACO3</td>
<td>MG/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00430</td>
<td>CO3 ALK</td>
<td>CACO3</td>
<td>MG/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00500</td>
<td>RESIDUE TOTAL</td>
<td>MG/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00530</td>
<td>RESIDUE TOT NFLT</td>
<td>MG/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00610</td>
<td>NH3+NH4+ N TOTAL</td>
<td>MG/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00615</td>
<td>NO2-2 TOTAL</td>
<td>MG/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00620</td>
<td>NO3- N TOTAL</td>
<td>MG/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00625</td>
<td>TOT KJEL N</td>
<td>MG/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00665</td>
<td>PHOS+TOT</td>
<td>MG/L P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00940</td>
<td>CHLORIDE</td>
<td>CL</td>
<td>MG/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00951</td>
<td>FLOUREIDE</td>
<td>F</td>
<td>TOTAL</td>
<td>MG/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01032</td>
<td>AS,TOT</td>
<td>UG/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01022</td>
<td>BRON</td>
<td>R,TOT</td>
<td>UG/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01027</td>
<td>CADMIUM</td>
<td>Cd,TOT</td>
<td>UG/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01032</td>
<td>CHROMIUM</td>
<td>HEX-VAL</td>
<td>UG/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01034</td>
<td>CHROMIUM</td>
<td>CR,TOT</td>
<td>UG/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01042</td>
<td>COPPER</td>
<td>Cu,TOT</td>
<td>UG/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01045</td>
<td>IRON</td>
<td>Fe,TOT</td>
<td>UG/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01051</td>
<td>LEAD</td>
<td>Pb,TOT</td>
<td>UG/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01067</td>
<td>NICKEL</td>
<td>Ni,TOTAL</td>
<td>UG/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01077</td>
<td>SILVER</td>
<td>Ag,TOT</td>
<td>UG/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01092</td>
<td>ZINC</td>
<td>Zn,TOT</td>
<td>UG/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01105</td>
<td>ALUMINUM</td>
<td>Al,TOT</td>
<td>UG/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31501</td>
<td>TOT COLI</td>
<td>NF:MENDO</td>
<td>100ML</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31616</td>
<td>FEC COLI</td>
<td>FM+FCBR</td>
<td>100ML</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31679</td>
<td>FECCSTR</td>
<td>FM+ENT</td>
<td>100ML</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50060</td>
<td>CHLORINE</td>
<td>TOT RESO</td>
<td>MG/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70507</td>
<td>PHOS+T ORTHO</td>
<td>MG/L P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Some columns may be incomplete or contain placeholders.
- The table includes various water quality parameters with their respective units and values.
- The data seems to be related to a water quality monitoring or analysis report.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Number</th>
<th>Mean</th>
<th>Variance</th>
<th>Standard Deviation</th>
<th>Coefficient of Variation</th>
<th>Maximum</th>
<th>Minimum</th>
<th>Beg Date</th>
<th>End Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>71900 Hg, Total</td>
<td>ug/l</td>
<td>22</td>
<td>963636</td>
<td>2.16623</td>
<td>1.47161</td>
<td>1.52735</td>
<td>0.313792</td>
<td>5.80000</td>
<td>0.00000</td>
<td>77/11/15</td>
</tr>
<tr>
<td>INDEX 1310001</td>
<td>002740</td>
<td>06150</td>
<td>0420</td>
<td>MILES 0324.30 0391.30 018.00 000.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--------</td>
<td>-------</td>
<td>------</td>
<td>------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PARAMETER</td>
<td>MEAN</td>
<td>VARIANCE</td>
<td>STAN</td>
<td>DEV</td>
<td>COEF</td>
<td>VAR</td>
<td>STAN</td>
<td>ER</td>
<td>MAXIMUM</td>
<td>MINIMUM</td>
</tr>
<tr>
<td>WATER TEMP</td>
<td>CENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALTIMETRY</td>
<td>FEET</td>
<td>AB MSL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STREAM FLW</td>
<td>INST-CFS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TURN JSH</td>
<td>JTH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TURB TRIDMP</td>
<td>MACH FTU</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNDCTVY FLD</td>
<td>MICRHMHD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNDCTVY AT 25C</td>
<td>MICRHMHD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INTNSY SURVEY</td>
<td>IDENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DQ DOD MG/L</td>
<td></td>
</tr>
<tr>
<td>BOD 5 DAY MG/L</td>
<td></td>
</tr>
<tr>
<td>COD LOWLEVEL MG/L</td>
<td></td>
</tr>
<tr>
<td>PH SU 23</td>
<td></td>
</tr>
<tr>
<td>T ALK CAC03 MG/L</td>
<td></td>
</tr>
<tr>
<td>HC03 ALK CAC03 MG/L</td>
<td></td>
</tr>
<tr>
<td>CO3 ALK CAC03 MG/L</td>
<td></td>
</tr>
<tr>
<td>RESIDUE TOTAL MG/L</td>
<td></td>
</tr>
<tr>
<td>HESIDUE TOT NFT MG/L</td>
<td></td>
</tr>
<tr>
<td>NH3-NH4- TOT MG/L</td>
<td></td>
</tr>
<tr>
<td>NIM TOTAL MG/L</td>
<td></td>
</tr>
<tr>
<td>NO3-TOTAL MG/L</td>
<td></td>
</tr>
<tr>
<td>H2O-TOTAL MG/L</td>
<td></td>
</tr>
<tr>
<td>PHOS-TOT MG/L</td>
<td></td>
</tr>
<tr>
<td>CHLORIDE CL MG/L</td>
<td></td>
</tr>
<tr>
<td>FLUIDIDE F TOTAL MG/L</td>
<td></td>
</tr>
<tr>
<td>ARSENIC AS,TOT UG/L</td>
<td></td>
</tr>
<tr>
<td>BORON B,TOT UG/L</td>
<td></td>
</tr>
<tr>
<td>CADMIUM Cd,TOT UG/L</td>
<td></td>
</tr>
<tr>
<td>CHROMIUM CR,TOT UG/L</td>
<td></td>
</tr>
<tr>
<td>COPPER Cu,TOT UG/L</td>
<td></td>
</tr>
<tr>
<td>IRON Fe,TOT UG/L</td>
<td></td>
</tr>
<tr>
<td>LEAD Pb,TOT UG/L</td>
<td></td>
</tr>
<tr>
<td>NITROGEN N,TOTAL UG/L</td>
<td></td>
</tr>
<tr>
<td>SILVER Ag,TOT UG/L</td>
<td></td>
</tr>
<tr>
<td>ZINC Zn,TOT UG/L</td>
<td></td>
</tr>
<tr>
<td>ALUMINUM Al,TOT UG/L</td>
<td></td>
</tr>
<tr>
<td>TOT COLI MFL,ENHD /100ML</td>
<td></td>
</tr>
<tr>
<td>FEC COLI MFL,FCBR /100ML</td>
<td></td>
</tr>
<tr>
<td>FECBREP MFL,ENT /100ML</td>
<td></td>
</tr>
<tr>
<td>INDEX</td>
<td>1310001</td>
<td>002749</td>
<td>06150</td>
<td>0420</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W MILES</td>
<td>0324</td>
<td>30</td>
<td>0391</td>
<td>30</td>
<td>038.00</td>
<td>000.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PARAMETER</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50060 CHLORINE TOX RESID MG/L</td>
<td>1</td>
<td>4000000</td>
<td>1000000</td>
<td>1000000</td>
<td>77/12/14</td>
<td>77/12/14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>70507 PHOS-P ORTHO MG/L</td>
<td>11</td>
<td>212091</td>
<td>019240</td>
<td>138707</td>
<td>653999</td>
<td>141822</td>
<td>450000</td>
<td>008000</td>
<td>77/11/15</td>
</tr>
<tr>
<td></td>
<td>71900 MERCURY HG, TOTAL UG/L</td>
<td>11</td>
<td>536364</td>
<td>014546</td>
<td>120605</td>
<td>224857</td>
<td>036364</td>
<td>900000</td>
<td>500000</td>
<td>77/11/15</td>
</tr>
<tr>
<td>Parameter</td>
<td>UNIT(S)</td>
<td>Mean Value</td>
<td>SD Value</td>
<td>STD Value</td>
<td>MEAN Value</td>
<td>SD Value</td>
<td>STD Value</td>
<td>MEAN Value</td>
<td>SD Value</td>
<td>STD Value</td>
</tr>
<tr>
<td>---------------</td>
<td>---------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
</tr>
<tr>
<td>WATER TEMP</td>
<td>CENTS</td>
<td>13,7979</td>
<td>43,2204</td>
<td>6,5472</td>
<td>476475</td>
<td>1,01442</td>
<td>23,0000</td>
<td>2,00000</td>
<td>76/12/06</td>
<td>78/09/19</td>
</tr>
<tr>
<td>ALTITUDE</td>
<td>FEET</td>
<td>2,460,00</td>
<td></td>
<td></td>
<td>2,460,00</td>
<td></td>
<td></td>
<td>2,460,00</td>
<td>01/01/01</td>
<td>01/01/01</td>
</tr>
<tr>
<td>H2061</td>
<td>INST-CFS</td>
<td>20,0000</td>
<td></td>
<td></td>
<td>20,0000</td>
<td></td>
<td></td>
<td>20,0000</td>
<td>76/12/06</td>
<td>78/09/19</td>
</tr>
<tr>
<td>TEMP HACH FTU</td>
<td>12,0984</td>
<td>3,00000</td>
<td></td>
<td></td>
<td>3,00000</td>
<td></td>
<td></td>
<td>3,00000</td>
<td>76/12/06</td>
<td>78/09/19</td>
</tr>
<tr>
<td>CNDCY TV FIELD</td>
<td>MICROHNO</td>
<td>12,0000</td>
<td></td>
<td></td>
<td>12,0000</td>
<td></td>
<td></td>
<td>12,0000</td>
<td>76/12/06</td>
<td>78/09/19</td>
</tr>
<tr>
<td>CNDCY TV AT 25C</td>
<td>MICROHNO</td>
<td>12,0000</td>
<td></td>
<td></td>
<td>12,0000</td>
<td></td>
<td></td>
<td>12,0000</td>
<td>76/12/06</td>
<td>78/09/19</td>
</tr>
<tr>
<td>INTNCE SURVEY IDENT</td>
<td>43,0000</td>
<td>0,00000</td>
<td></td>
<td></td>
<td>0,00000</td>
<td></td>
<td></td>
<td>0,00000</td>
<td>76/12/06</td>
<td>78/09/19</td>
</tr>
<tr>
<td>DD</td>
<td>MG/L</td>
<td>4,00000</td>
<td></td>
<td></td>
<td>4,00000</td>
<td></td>
<td></td>
<td>4,00000</td>
<td>76/12/06</td>
<td>78/09/19</td>
</tr>
<tr>
<td>5 DAY</td>
<td>MG/L</td>
<td>0,00000</td>
<td></td>
<td></td>
<td>0,00000</td>
<td></td>
<td></td>
<td>0,00000</td>
<td>76/12/06</td>
<td>78/09/19</td>
</tr>
<tr>
<td>COD LOWLEVEL</td>
<td>MG/L</td>
<td>10,0000</td>
<td></td>
<td></td>
<td>10,0000</td>
<td></td>
<td></td>
<td>10,0000</td>
<td>76/12/06</td>
<td>78/09/19</td>
</tr>
<tr>
<td>PH</td>
<td>SU</td>
<td>0,00000</td>
<td></td>
<td></td>
<td>0,00000</td>
<td></td>
<td></td>
<td>0,00000</td>
<td>76/12/06</td>
<td>78/09/19</td>
</tr>
<tr>
<td>TALK CACO3</td>
<td>MG/L</td>
<td>15,0000</td>
<td></td>
<td></td>
<td>15,0000</td>
<td></td>
<td></td>
<td>15,0000</td>
<td>76/12/06</td>
<td>78/09/19</td>
</tr>
<tr>
<td>HCO3 ALK CACO3</td>
<td>MG/L</td>
<td>15,0000</td>
<td></td>
<td></td>
<td>15,0000</td>
<td></td>
<td></td>
<td>15,0000</td>
<td>76/12/06</td>
<td>78/09/19</td>
</tr>
<tr>
<td>CaCO3 ALK CACO3</td>
<td>MG/L</td>
<td>15,0000</td>
<td></td>
<td></td>
<td>15,0000</td>
<td></td>
<td></td>
<td>15,0000</td>
<td>76/12/06</td>
<td>78/09/19</td>
</tr>
<tr>
<td>RESIDUE TOTAL</td>
<td>MG/L</td>
<td>17,0000</td>
<td></td>
<td></td>
<td>17,0000</td>
<td></td>
<td></td>
<td>17,0000</td>
<td>76/12/06</td>
<td>78/09/19</td>
</tr>
<tr>
<td>RESIDUE TOT NFLT</td>
<td>MG/L</td>
<td>17,0000</td>
<td></td>
<td></td>
<td>17,0000</td>
<td></td>
<td></td>
<td>17,0000</td>
<td>76/12/06</td>
<td>78/09/19</td>
</tr>
<tr>
<td>NH3+4NH4+ N TOTAL</td>
<td>MG/L</td>
<td>17,0000</td>
<td></td>
<td></td>
<td>17,0000</td>
<td></td>
<td></td>
<td>17,0000</td>
<td>76/12/06</td>
<td>78/09/19</td>
</tr>
<tr>
<td>ROZ-N TOT</td>
<td>MG/L</td>
<td>17,0000</td>
<td></td>
<td></td>
<td>17,0000</td>
<td></td>
<td></td>
<td>17,0000</td>
<td>76/12/06</td>
<td>78/09/19</td>
</tr>
<tr>
<td>TOT KJEI N</td>
<td>MG/L</td>
<td>17,0000</td>
<td></td>
<td></td>
<td>17,0000</td>
<td></td>
<td></td>
<td>17,0000</td>
<td>76/12/06</td>
<td>78/09/19</td>
</tr>
<tr>
<td>PHOS-TOT</td>
<td>MG/L</td>
<td>17,0000</td>
<td></td>
<td></td>
<td>17,0000</td>
<td></td>
<td></td>
<td>17,0000</td>
<td>76/12/06</td>
<td>78/09/19</td>
</tr>
<tr>
<td>CYANIDE CN-TOT</td>
<td>MG/L</td>
<td>10,0000</td>
<td></td>
<td></td>
<td>10,0000</td>
<td></td>
<td></td>
<td>10,0000</td>
<td>76/12/06</td>
<td>78/09/19</td>
</tr>
<tr>
<td>CHLORIDE CL</td>
<td>MG/L</td>
<td>16,0000</td>
<td></td>
<td></td>
<td>16,0000</td>
<td></td>
<td></td>
<td>16,0000</td>
<td>76/12/06</td>
<td>78/09/19</td>
</tr>
<tr>
<td>FLUIDINE F TOT</td>
<td>MG/L</td>
<td>16,0000</td>
<td></td>
<td></td>
<td>16,0000</td>
<td></td>
<td></td>
<td>16,0000</td>
<td>76/12/06</td>
<td>78/09/19</td>
</tr>
<tr>
<td>ARSENIC AS TOT</td>
<td>UG/L</td>
<td>10,0000</td>
<td></td>
<td></td>
<td>10,0000</td>
<td></td>
<td></td>
<td>10,0000</td>
<td>76/12/06</td>
<td>78/09/19</td>
</tr>
<tr>
<td>BORON B TOT</td>
<td>UG/L</td>
<td>18,0000</td>
<td></td>
<td></td>
<td>18,0000</td>
<td></td>
<td></td>
<td>18,0000</td>
<td>76/12/06</td>
<td>78/09/19</td>
</tr>
<tr>
<td>CALCIUM Cd TOT</td>
<td>UG/L</td>
<td>10,0000</td>
<td></td>
<td></td>
<td>10,0000</td>
<td></td>
<td></td>
<td>10,0000</td>
<td>76/12/06</td>
<td>78/09/19</td>
</tr>
<tr>
<td>CHROME HEM-VAL</td>
<td>UG/L</td>
<td>10,0000</td>
<td></td>
<td></td>
<td>10,0000</td>
<td></td>
<td></td>
<td>10,0000</td>
<td>76/12/06</td>
<td>78/09/19</td>
</tr>
<tr>
<td>CHROME CR TOT</td>
<td>UG/L</td>
<td>20,0000</td>
<td></td>
<td></td>
<td>20,0000</td>
<td></td>
<td></td>
<td>20,0000</td>
<td>76/12/06</td>
<td>78/09/19</td>
</tr>
<tr>
<td>COPPER Cu TOT</td>
<td>UG/L</td>
<td>10,0000</td>
<td></td>
<td></td>
<td>10,0000</td>
<td></td>
<td></td>
<td>10,0000</td>
<td>76/12/06</td>
<td>78/09/19</td>
</tr>
<tr>
<td>IRON Fe TOT</td>
<td>UG/L</td>
<td>10,0000</td>
<td></td>
<td></td>
<td>10,0000</td>
<td></td>
<td></td>
<td>10,0000</td>
<td>76/12/06</td>
<td>78/09/19</td>
</tr>
<tr>
<td>LEAD Pb TOT</td>
<td>UG/L</td>
<td>19,0000</td>
<td></td>
<td></td>
<td>19,0000</td>
<td></td>
<td></td>
<td>19,0000</td>
<td>76/12/06</td>
<td>78/09/19</td>
</tr>
<tr>
<td>NICKEL Ni TOT</td>
<td>UG/L</td>
<td>30,0000</td>
<td></td>
<td></td>
<td>30,0000</td>
<td></td>
<td></td>
<td>30,0000</td>
<td>76/12/06</td>
<td>78/09/19</td>
</tr>
<tr>
<td>SILVER Ag TOT</td>
<td>UG/L</td>
<td>10,0000</td>
<td></td>
<td></td>
<td>10,0000</td>
<td></td>
<td></td>
<td>10,0000</td>
<td>76/12/06</td>
<td>78/09/19</td>
</tr>
<tr>
<td>ZINC Zn TOT</td>
<td>UG/L</td>
<td>10,0000</td>
<td></td>
<td></td>
<td>10,0000</td>
<td></td>
<td></td>
<td>10,0000</td>
<td>76/12/06</td>
<td>78/09/19</td>
</tr>
<tr>
<td>ALUMINUM Al TOT</td>
<td>UG/L</td>
<td>30,0000</td>
<td></td>
<td></td>
<td>30,0000</td>
<td></td>
<td></td>
<td>30,0000</td>
<td>76/12/06</td>
<td>78/09/19</td>
</tr>
<tr>
<td>TiO2 TOT CO2</td>
<td>100ML</td>
<td>17,0000</td>
<td></td>
<td></td>
<td>17,0000</td>
<td></td>
<td></td>
<td>17,0000</td>
<td>76/12/06</td>
<td>78/09/19</td>
</tr>
<tr>
<td>TiO2 TOT CO3</td>
<td>100ML</td>
<td>17,0000</td>
<td></td>
<td></td>
<td>17,0000</td>
<td></td>
<td></td>
<td>17,0000</td>
<td>76/12/06</td>
<td>78/09/19</td>
</tr>
<tr>
<td>TiO2 TOT HENT</td>
<td>100ML</td>
<td>17,0000</td>
<td></td>
<td></td>
<td>17,0000</td>
<td></td>
<td></td>
<td>17,0000</td>
<td>76/12/06</td>
<td>78/09/19</td>
</tr>
<tr>
<td>INDEX</td>
<td>MILES</td>
<td>PARAMETER</td>
<td>UNITS</td>
<td>NUMBER</td>
<td>MEAN</td>
<td>VARIANCE</td>
<td>STAN DEV</td>
<td>COEF VAR</td>
<td>STAND ERR</td>
<td>MAXIMUM</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-----------</td>
<td>-------</td>
<td>--------</td>
<td>------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>1310001</td>
<td>06150</td>
<td>CHLORINE</td>
<td>mg/L</td>
<td>2</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>77/12/14</td>
</tr>
<tr>
<td>170574</td>
<td>039130</td>
<td>PHOS-P</td>
<td>mg/L</td>
<td>17</td>
<td>1.92411</td>
<td>0.021649</td>
<td>1.47136</td>
<td>0.764693</td>
<td>0.035686</td>
<td>77/11/15</td>
</tr>
<tr>
<td>171900</td>
<td>03390</td>
<td>MERCURY</td>
<td>ug/L</td>
<td>18</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>77/11/15</td>
</tr>
</tbody>
</table>
STORET STATION 2040127
S CHANNEL BOISE R AT LINER ROAD

FEC
COLI
FM-
FCBR
/100ML

Criteria Level 50/100 ml

1977
N D J F M A M J J A S 1978

160
80
240
320
400
STORRET STATION 2040127
S CHANNEL BOISE R AT LINDER ROAD

NH₃ + NH₄⁻ N
TOTAL

MG/L

0.40
0.32
0.24
0.16
0.08

1977 1978
N D J F M A M J J A S
STORET STATION 2040119
BOISE RIVER AT CAPITOL ST BRIDGE

Alarm Level, 30 mg/l Maximum Desirable

Criteria Level 25 mg/l
STORET STATION 2040119
BOISE RIVER AT CAPITOL ST BRIDGE

Criteria Level .3 mg/l

NO3-N

TOTAL

Mg/l

1977

1978
BOISE RIVER

INTENSIVE SURVEY DATA FOR 6 DAYS OF MONITORING
1 : 10-18-77 2 : 11-15-77 3 : 12-14-77
4 : 01-25-78 5 : 02-14-78 6 : 03-22-78

Criteria Level 19°c

WATER TEMP CENT

S. Channel of Boise Ri
Eagle Drain
Eagle Lff

Land St. Lff.
Dale Morrison Park Drain
Goethals Discharge

RIVER MILE
INTENSIVE SURVEY
BOISE RIVER
DATA FOR 6 DAYS OF MONITORING
1: 10-18-77
2: 11-15-77
3: 12-14-77
4: 01-25-78
5: 02-14-78
6: 03-22-78

DO

S. Channel Boise R.
Eagle Drain
Eagle Eff.
Lander St. Eff.
Mann Morrison Park Dr.
GeoThermal Discharge

Criteria Level 6.0 mg/l

RIVER MILE
BOISE RIVER

INTENSIVE SURVEY DATA FOR 6 DAYS OF MONITORING
1: 04-27-78 2: 05-23-78 3: 06-20-78
4: 07-25-78 5: 08-08-78 6: 09-19-78

DO
20
16
12
8
4

M G/L

S. Channel Boise R.
Eagle Drain
Eagle Eff.
Lander St. Eff.
Ann Morrison Park Dr.
Geothermal Discharge

Criteria Level 6.0 mg/l

RIVER MILE
BOISE RIVER

INTENSIVE SURVEY DATA FOR 5 DAYS OF MONITORING

1 : 12-06-76 2 : 01-17-77 3 : 02-07-77
4 : 03-08-77 5 : 04-04-77

DO

MG/L

M 4

RIVER MILE

Criteria Level 6.0 mg/l
BOISE RIVER

INTENSIVE SURVEY DATA FOR 6 DAYS OF MONITORING

1: 10-18-77 2: 11-15-77 3: 12-14-77
4: 01-25-78 5: 02-14-78 6: 03-22-78

Criteria Level 9.0 Max.

Criteria Level 6.5 Min.

S. Channel of Boise R.
Eagle Drain Eff.
Lander St. Eff.
Ann Morrison Park Drain
Geothermal Discharge

RIVER MILE
BOISE RIVER

INTENSIVE SURVEY DATA FOR 6 DAYS OF MONITORING
1 : 04-27-78 2 : 05-23-78 3 : 06-20-78
4 : 07-25-78 5 : 08-08-78 6 : 09-19-78

Criteria Level 9.0 Max.

Criteria Level 6.5 Min.

30 40 50 60 70
RIVER MILE

S. Channel Boise R.
Eagle Drain Eagle Eff.
Lander St. Eff.
Ann Morrison Park Drain
Geothermal Discharge
S. Channel of Boise R.
Eagle Drain
Eagle Eff.
Landor St. Eff.
Ann Morrison Park Drain
Geothermal Discharge

RIVER MILE
BOISE RIVER
INTENSIVE SURVEY DATA FOR 6 DAYS OF MONITORING

1: 04-27-78 2: 05-23-78 3: 06-20-78
4: 07-25-78 5: 08-08-78 6: 09-19-78

RIVER MILE

FEC
COL
LIM
H.
FCBR
/ 100 ML

S. Channel Boise R.
Eagle Drain
Eagle Eff.
Lander St. Eff.
Ann Morrison Park Drain
Geothermal Discharge

Criteria Level 50/100 ml
BOISE RIVER

INTENSIVE SURVEY DATA FOR 6 DAYS OF MONITORING

1 : 10-18-77
2 : 11-15-77
3 : 12-14-77
4 : 01-25-78
5 : 02-14-78
6 : 03-22-78

Criteria Level 25 FTU
BOISE RIVER

INTENSIVE SURVEY DATA FOR 6 DAYS OF MONITORING

1: 04-27-78 2: 05-23-78 3: 06-20-78
4: 07-25-78 5: 08-08-78 6: 09-19-78

Criteria Level 25 FTU

River Mile

TURB

TRB

TBD

MTR

ACH

FTU

30 40 50 60 70
ECIPE RIVER

INTENSIVE SURVEY DATA FOR 6 DAYS OF MONITORING

1 : 04-27-78 2 : 05-23-78 3 : 06-20-78
4 : 07-25-78 5 : 08-08-78 6 : 09-10-78

Criteria Level 25 mg/l

[Diagram showing river mile data with various points marked along the river and corresponding dates.]
S. Channel Boise R.

Eagle Drain
Eagle Eff.

Lander St. Eff.

Ann Morrison Park Drain
Geothermal Discharge
BOISE RIVER
INTENSIVE SURVEY DATA FOR 6 DAYS OF MONITORING
1: 10-18-77
2: 11-15-77
3: 12-14-77
4: 01-25-78
5: 02-14-78
6: 03-22-78

PHOS
ORTHO
MG/L
P

S. Channel Boise R.
Eagle Drain
Eagle Eff.
Landor St. Ef.
Ann Morrison Park Drain
Geothermal Discharge

Criteria Level: 0.05 mg/l

RIVER MILE 30 40 50 60 70
INTENSIVE SURVEY

BOISE RIVER

DATA FOR 6 DAYS OF MONITORING

1: 04-27-78
2: 05-23-78
3: 06-20-78
4: 07-25-78
5: 08-08-78
6: 09-19-78

PH OS T

ORTH O

M G / L

P

S. Channel Boise R.
Eagle Drain
Eagle Eff.

Ann Morrison Park Drain
Geothermal Discharge

Criteria Level .05 mg/l

30 40 50 60 70
RIVER MILE
BOISE RIVER

INTENSIVE SURVEY DATA FOR 6 DAYS OF MONITORING

1: 10-18-77
2: 11-15-77
3: 12-14-77
4: 01-25-78
5: 02-14-78
6: 03-22-78

NITRATE N

TOTAL

M G / L

30 40 50 60 70

RIVER MILE

Criteria Level .3 mg/l

Ann Morrison Park Drain
Geothermal Discharge

S. Channel Boise R.
Eagle Drain
Eagle Eff.
Lander St. Eff.
BOISE RIVER

INTENSIVE SURVEY DATA FOR 6 DAYS OF MONITORING
1: 04-27-78 2: 05-23-78 3: 06-20-78
4: 07-25-78 5: 08-08-78 6: 09-19-78

NO3-N

TOTAL NO3-N

Threshold Level: 3 mg/l

RIVER MILE

30 40 50 60 70
INTENSIVE SURVEY BOISE RIVER
DATA FOR 6 DAYS OF MONITORING
1: 10-18-77 2: 11-15-77 3: 12-14-77
4: 01-25-78 5: 02-14-78 6: 03-22-78

NO 2-N
TOTAL
N

MG/L

RIVER MILE
DOISE RIVER
INTENSIVE SURVEY DATA FOR 6 DAYS OF MONITORING
1: 04-27-78
2: 05-23-78
3: 06-20-78
4: 07-25-78
5: 08-08-78
6: 09-19-78

NO2-N
TOTAL
MG/L

RIVER MILE

S. Channel Boise R.
Eagle Drain
Eagle Eff.
Landor St.
Ann Morrison Park Drain
Geothermal Discharge

0.02
0.03
0.05
0.06
0.08
INTENSIVE SURVEY BOISE RIVER
DATA FOR 6 DAYS OF MONITORING
1: 10-18-77 2: 11-15-77 3: 12-14-77
4: 01-25-78 5: 02-14-78 6: 03-22-78

NH3 + NH4 - N
TOTAL

MG/L

RIVER MILE

S. Channel Boise R. Eagle Drain Eagle Eff.
Ann Morrison Park Drain Geothermal Discharge
INTENSIVE SURVEY DATA FOR 6 DAYS OF MONITORING

1: 04-27-78 2: 05-23-78 3: 06-20-78
4: 07-25-78 5: 08-08-78 6: 09-19-78

NH₃ + NH₄ - N
TOTAL
MG/L

RIVER MILE

S. Channel Boise R.
Eagle Drain
Eagle Eff.

Lander St. Eff.
Ann Morrison Park Drain
Geothermal Discharge
BOISE RIVER
INTENSIVE SURVEY DATA FOR 5 DAYS OF MONITORING
1: 12-06-76 2: 01-17-77 3: 02-07-77
4: 03-08-77 5: 04-04-77

Criteria Level 300 ug/l

S. Channel of Boise R.
Eagle Drain
Eagle
Eff.
Lander St. Eff.
Ann Morrison Park Drain
Geothermal Discharge

RIVER MILE
BOISE RIVER

INTENSIVE SURVEY DATA FOR 5 DAYS OF MONITORING

1 : 05-02-77 2 : 06-06-77 3 : 07-12-77
4 : 08-09-77 5 : 09-02-77

IRON

FETOT

UgL/L

30 40 50 60 70

RIVER MILE

Criteria Level 300 ug/l
INTENSIVE SURVEY DATA FOR 6 DAYS OF MONITORING
1: 10-18-77 2: 11-15-77 3: 12-14-77
4: 01-25-78 5: 02-14-78 6: 03-22-78

LEAD

P B T O T

UG/L

S. Channel Boise R.
Eagle Drain
Eagle Eff.
Lander St. Eff.
Ann Morrison Park Drain
Geothermal Discharge

Criteria Level 50 ug/l

RIVER MILE

30 40 50 60 70
INTENSIVE SURVEY BOISE RIVER DATA FOR 6 DAYS OF MONITORING
1: 10-18-77 2: 11-15-77 3: 12-14-77
4: 01-25-78 5: 02-14-78 6: 03-22-78

ZINC

ZN TOT

UG/L

RIVER MILE

S. Channel Boise R.

Eagle Drain Eff.

Lander St. Eff.

Ann Morrison Fld. Drain

Geothermal Discharge

Criteria Level 50 ug/l
BOISE RIVER
INTENSIVE SURVEY DATA FOR 6 DAYS OF MONITORING
1 : 04-27-78 2 : 05-23-78 3 : 06-20-78
4 : 07-25-78 5 : 08-08-78 6 : 09-19-78

Criteria Level 50 µg/l

RIVER MILE

S. Channel Boise R.
Eagle Drain
Eagle Eff.
Sandar St. Eff.
Ann Morrison Park Drain
Geothermal Discharge

UG/L

Zn

Zn TOT
S. Channel Boise R.

Eagle Drain
Eagle Eff.

Lander St. Eff.

Ann Morrison Park Drain
Geothermal Discharge
INTENSIVE SURVEY DATA FOR 6 DAYS OF MONITORING

1: 04-27-78 2: 05-23-78 3: 06-20-78
4: 07-25-78 5: 08-08-78 6: 09-19-78

Mercury (µg/l) vs. River Mile

- Criteria Level: 0.5 µg/l
- S. Channel Boise R.
- Eagle Drain
- Eagle Eff.
- Lander St. Eff.
- Anson-Parrison Park Drain
- Geothermal Discharge

River Mile: 30 to 70
INTENSIVE SURVEY DATA FOR 6 DAYS OF MONITORING

1 : 10-18-77 2 : 11-15-77 3 : 12-14-77
4 : 01-25-78 5 : 02-14-78 6 : 03-22-78

RIVER MILE

ALUMINUM

AL TOT

UG/L

S. Channel Boise R.
Eagle Drain
Geothermal Discharge
Lander St. Eff.
Morrison Park Drain

Criteria Level: 100 ug/l
Boise River

Intensive Survey Data for 6 Days of Monitoring

1: 04-27-78
2: 05-23-78
3: 06-20-78
4: 07-25-78
5: 08-08-78
6: 09-19-78

Aluminum

[Graph showing aluminum concentrations along the Boise River with various points and labels such as S. Channel Boise R., Eagle Drain Eff., Lander St. Eff., and Cottonwood Park Drain Geothermal Discharge.]

Criteria level 100 ug/l
BOISE RIVER
INTENSIVE SURVEY DATA FOR 5 DAYS OF MONITORING
1 : 12-06-78 2 : 01-17-77 3 : 02-07-77
4 : 03-08-77 5 : 04-04-77

Criteria Level 100 ug/l

S. Channel of Boise R.
Eagle Drain
Eagle Eff.
Lander St. Eff.
Ann Morrison Park Drain
Geothermal Discharge

RIVER MILE

ALUMINUM AT TOT

ULG/L

40

80

120

160

200
BOISE RIVER
INTENSIVE SURVEY DATA FOR 5 DAYS OF MONITORING
1 : 12-06-76 2 : 01-17-77 3 : 02-07-77
4 : 03-08-77 5 : 04-04-77

Criteria Level 1 mg/l
S CHANNEL
BOISE RIVER
INTENSIVE SURVEY DATA FOR 6 DAYS OF MONITORING
1: 04-27-78 2: 05-23-78 3: 06-20-78
4: 07-25-78 5: 08-08-78 6: 09-19-78

Criteria Level 19°C

Water Temp

Fish Patch - Drain

Thurman Drain

W. Boise EFF.
S CHANNEL
BOISE RIVER
INTENSIVE SURVEY DATA FOR 6 DAYS OF MONITORING
1: 10-18-77 2: 11-15-77 3: 12-14-77
4: 01-25-78 5: 02-14-78 6: 03-22-78

DO

Fish Hatchery Drain
Thyman Drain
W. Boise Eff.

Criteria Level 6.9 mg/l

M G / L

RIVER MILE

1 2 3 4 5 6
S CHANNEL
BOISE RIVER
INTENSIVE SURVEY DATA FOR 6 DAYS OF MONITORING
1: 04-27-78 2: 05-23-78 3: 06-20-78
4: 07-25-78 5: 08-08-78 6: 09-19-78

DO

Fish Hatchery Drain

Internal Drain

W. Boise Effl.

MG/L

Criteria Level 6.0 mg/l

RIVER MILE
S CHANNEL
BOISE RIVER
INTENSIVE SURVEY DATA FOR 6 DAYS OF MONITORING
1: 10-18-77 2: 11-15-77 3: 12-14-77
4: 01-25-78 5: 02-14-78 6: 03-22-78

FEC

CLO

LIM

FLM

FBR

/-

10

0

100

ML

100

ML

80

40

0

RIVER MILE

Fish Hatchery Drain

Thurman Drain

Criteria Level 50/100 ml

W. Boise Effl.
S CHANNEL
BOISE RIVER

INTENSIVE SURVEY DATA FOR 6 DAYS OF MONITORING
1: 10-18-77 2: 11-15-77 3: 12-14-77
4: 01-25-78 5: 02-14-78 6: 03-22-78

RESIDUE

TOTAL

NITRITE

MG/L

80

160

200

Fish Hatchery Drain

Thurman Drain

Alarm Level, 87 mg/l Maximum Desirable

Criteria Level 25 mg/l

RIVER MILE
S CHANNEL
BOISE RIVER
INTENSIVE SURVEY DATA FOR 6 DAYS OF MONITORING
1 : 10-18-77
2 : 11-15-77
3 : 12-14-77
4 : 01-25-78
5 : 02-14-78
6 : 03-22-78

RIVER MILE

PHOS - TOT

MG/L P

Fish Hatchery Drain
Thurman Drain
H. Boise Eff.
S CHANNEL
BOISE RIVER
INTENSIVE SURVEY DATA FOR 6 DAYS OF MONITORING
1: 04-27-78 2: 05-23-78 3: 06-20-78
4: 07-25-78 5: 08-08-78 6: 09-19-78

PHOS (ppm)

Fish Hatchery Drain
Thurman Drain
U. Boise Effl.

Criteria Level .1 mg/l

RIVER MILE

0 1 2 3 4 5 6
S CHANNEL
BOISE RIVER
INTENSIVE SURVEY DATA FOR 6 DAYS OF MONITORING
1: 10-18-77 2: 11-15-77 3: 12-14-77
4: 01-25-78 5: 02-14-78 6: 03-22-78

PHOS - ORTHO
MG/L P

Fish Hatchery Drain
Thurman Drain

Criteria Level .05 mg/l

RIVER MILE
0 1 2 3 4 5 6
S CHANNEL
BOISE RIVER
INTENSIVE SURVEY DATA FOR 6 DAYS OF MONITORING
1: 04-27-78 2: 05-23-78 3: 06-20-78
4: 07-25-78 5: 08-08-78 6: 09-19-78

RIVER MILE

PHOS - T

1.6

1.2

0.8

0.4

ORTH O

M G / L

P

Fish Hatchery Drain
Thurman Drain
W. Boise Effl.

Criteria Level 0.05 mg/l
S CHANNEL
BOISE RIVER
INTENSIVE SURVEY DATA FOR 6 DAYS OF MONITORING
1: 10-18-77 2: 11-15-77 3: 12-14-77
4: 01-25-78 5: 02-14-78 6: 03-22-78

NO3--N

TOTAL

Mg/l

Fish Hatchery Drain

Hurnay Drain

Criteria Level .3 mg/l

RIVER MILE
S CHANNEL
BOISE RIVER
INTENSIVE SURVEY DATA FOR 6 DAYS OF MONITORING
1: 04-27-78 2: 05-23-78 3: 06-20-78
4: 07-25-78 5: 08-08-78 6: 09-19-78

TOTAL NITROGEN (MG/L)

RIVER MILE

Criteria Level .3 mg/l
S CHANNEL
BOISE RIVER

INTENSIVE SURVEY DATA FOR 6 DAYS OF MONITORING
1: 10-18-77 2: 11-15-77 3: 12-14-77
4: 01-25-78 5: 02-14-78 6: 03-22-78

TOTAL N: \(NH_3 + NH_4\) + N

MGLE

RIVER MILE

Fish Hatchery Drain
Thurman Drain
W. Boise Effl.
S CHANNEL
BOISE RIVER
INTENSIVE SURVEY
DATA FOR 6 DAYS OF MONITORING
1: 04-27-78 2: 05-23-78 3: 06-20-78
4: 07-25-78 5: 08-08-78 6: 09-19-78

NH₃ + NH₄ - N

TOTAL

0.20

0.16

0.12

0.08

0.04

Fish Hatchery Drain

Huffman Drain

RIVER MILE

0 1 2 3 4 5 6
S'CHANNEL
BOISE RIVER
INTENSIVE SURVEY DATA FOR 6 DAYS OF MONITORING
1: 10-18-77 2: 11-15-77 3: 12-14-77
4: 01-25-78 5: 02-14-78 6: 03-22-78

IRON
FE
TOT
UG/L

Fish Hatchery Drain
Thurman Drain
W. Boise Effl.

Criteria Level 300 ug/l

RIVER MILE
0 1 2 3 4 5 6
S CHANNEL
BOISE RIVER
INTENSIVE SURVEY DATA FOR 6 DAYS OF MONITORING
1 : 04-27-78 2 : 05-23-78 3 : 06-20-78
4 : 07-25-78 5 : 08-08-78 6 : 09-19-78

IRON

FETOT

UG/L

Fish Hatchery Drain

Thurman Drain

K. Boise Effl.

Criteria Level 300 ug/l

RIVER MILE
S CHANNEL
BOISE RIVER
INTENSIVE SURVEY DATA FOR 6 DAYS OF MONITORING
1 : 10-18-77 2 : 11-15-77 3 : 12-14-77
4 : 01-25-78 5 : 02-14-78 6 : 03-22-78

COPPER

URAL

FISH HATCHERY DRAIN
THURMAN DRAIN
W. BOISE EFFL.

RIVER MILE
S CHANNEL
BOISE RIVER
INTENSIVE SURVEY DATA FOR 6 DAYS OF MONITORING
1: 04-27-78 2: 05-23-78 3: 06-20-78
4: 07-25-78 5: 08-08-78 6: 09-19-78

COPPER
C U T O T
UG/L

Fish Hatchery Drain
Thurman Drain
W. Boise Effl.

Criteria Level 10 ug/l

RIVER MILE

0 1 2 3 4 5 6
S CHANNEL
BOISE RIVER
INTENSIVE SURVEY DATA FOR 6 DAYS OF MONITORING
1: 10-18-77 2: 11-15-77 3: 12-14-77
4: 01-25-78 5: 02-14-78 6: 03-22-78

Criteria Level 50 ug/l

ZINC

ZN TOT

UG/L

Fish Hatchery Drain

Thurman Drain

RIVER MILE
S CHANNEL
BOISE RIVER
INTENSIVE SURVEY DATA FOR 6 DAYS OF MONITORING
1: 04-27-78 2: 05-23-78 3: 06-20-78
4: 07-25-78 5: 08-08-78 6: 09-19-78

Criteria Level 50 ug/l

ZINC

ZINC TOT

UG/L

Fish Hatchery Drain
Thurman Drain

W. Boise Effl.

RIVER MILE

0 1 2 3 4 5 6
S CHANNEL
BOISE RIVER
INTENSIVE SURVEY DATA FOR 6 DAYS OF MONITORING
1 : 10-18-77 2 : 11-15-77 3 : 12-14-77
4 : 01-25-78 5 : 02-14-78 6 : 03-22-78

1000
800
600
400
200
0

ALUMINUM
ALT.
TOT.
UG/L

Fish Hatchery Drain
Thurnian Drain
W. Boise Efl.

Criteria Level 100 ug/l